Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
sqr0lem
Next ⟩
sqrt0
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqr0lem
Description:
Square root of zero.
(Contributed by
Mario Carneiro
, 9-Jul-2013)
Ref
Expression
Assertion
sqr0lem
⊢
A
∈
ℂ
∧
A
2
=
0
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
↔
A
=
0
Proof
Step
Hyp
Ref
Expression
1
sqeq0
⊢
A
∈
ℂ
→
A
2
=
0
↔
A
=
0
2
1
biimpa
⊢
A
∈
ℂ
∧
A
2
=
0
→
A
=
0
3
2
3ad2antr1
⊢
A
∈
ℂ
∧
A
2
=
0
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
→
A
=
0
4
0re
⊢
0
∈
ℝ
5
eleq1
⊢
A
=
0
→
A
∈
ℝ
↔
0
∈
ℝ
6
4
5
mpbiri
⊢
A
=
0
→
A
∈
ℝ
7
6
recnd
⊢
A
=
0
→
A
∈
ℂ
8
sq0i
⊢
A
=
0
→
A
2
=
0
9
0le0
⊢
0
≤
0
10
fveq2
⊢
A
=
0
→
ℜ
⁡
A
=
ℜ
⁡
0
11
re0
⊢
ℜ
⁡
0
=
0
12
10
11
eqtrdi
⊢
A
=
0
→
ℜ
⁡
A
=
0
13
9
12
breqtrrid
⊢
A
=
0
→
0
≤
ℜ
⁡
A
14
rennim
⊢
A
∈
ℝ
→
i
⁢
A
∉
ℝ
+
15
6
14
syl
⊢
A
=
0
→
i
⁢
A
∉
ℝ
+
16
8
13
15
3jca
⊢
A
=
0
→
A
2
=
0
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
17
7
16
jca
⊢
A
=
0
→
A
∈
ℂ
∧
A
2
=
0
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
18
3
17
impbii
⊢
A
∈
ℂ
∧
A
2
=
0
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
↔
A
=
0