Metamath Proof Explorer


Theorem sqr11d

Description: The square root function is one-to-one. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1 φ A
resqrcld.2 φ 0 A
sqr11d.3 φ B
sqr11d.4 φ 0 B
sqrt11d.5 φ A = B
Assertion sqr11d φ A = B

Proof

Step Hyp Ref Expression
1 resqrcld.1 φ A
2 resqrcld.2 φ 0 A
3 sqr11d.3 φ B
4 sqr11d.4 φ 0 B
5 sqrt11d.5 φ A = B
6 sqrt11 A 0 A B 0 B A = B A = B
7 1 2 3 4 6 syl22anc φ A = B A = B
8 5 7 mpbid φ A = B