Metamath Proof Explorer


Theorem sqrecd

Description: Square of reciprocal. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses expcld.1 φ A
sqrecd.1 φ A 0
Assertion sqrecd φ 1 A 2 = 1 A 2

Proof

Step Hyp Ref Expression
1 expcld.1 φ A
2 sqrecd.1 φ A 0
3 2z 2
4 3 a1i φ 2
5 exprec A A 0 2 1 A 2 = 1 A 2
6 1 2 4 5 syl3anc φ 1 A 2 = 1 A 2