| Step |
Hyp |
Ref |
Expression |
| 1 |
|
abscl |
|
| 2 |
1
|
recnd |
|
| 3 |
|
subneg |
|
| 4 |
2 3
|
mpancom |
|
| 5 |
4
|
eqeq1d |
|
| 6 |
|
negcl |
|
| 7 |
2 6
|
subeq0ad |
|
| 8 |
5 7
|
bitr3d |
|
| 9 |
|
ax-icn |
|
| 10 |
|
absge0 |
|
| 11 |
1 10
|
jca |
|
| 12 |
|
eleq1 |
|
| 13 |
|
breq2 |
|
| 14 |
12 13
|
anbi12d |
|
| 15 |
11 14
|
imbitrid |
|
| 16 |
15
|
impcom |
|
| 17 |
|
resqrtcl |
|
| 18 |
16 17
|
syl |
|
| 19 |
18
|
recnd |
|
| 20 |
|
mulcl |
|
| 21 |
9 19 20
|
sylancr |
|
| 22 |
|
sqrtneglem |
|
| 23 |
16 22
|
syl |
|
| 24 |
|
negneg |
|
| 25 |
24
|
adantr |
|
| 26 |
25
|
eqeq2d |
|
| 27 |
26
|
3anbi1d |
|
| 28 |
23 27
|
mpbid |
|
| 29 |
|
oveq1 |
|
| 30 |
29
|
eqeq1d |
|
| 31 |
|
fveq2 |
|
| 32 |
31
|
breq2d |
|
| 33 |
|
oveq2 |
|
| 34 |
|
neleq1 |
|
| 35 |
33 34
|
syl |
|
| 36 |
30 32 35
|
3anbi123d |
|
| 37 |
36
|
rspcev |
|
| 38 |
21 28 37
|
syl2anc |
|
| 39 |
38
|
ex |
|
| 40 |
8 39
|
sylbid |
|
| 41 |
|
resqrtcl |
|
| 42 |
1 10 41
|
syl2anc |
|
| 43 |
42
|
recnd |
|
| 44 |
43
|
adantr |
|
| 45 |
|
addcl |
|
| 46 |
2 45
|
mpancom |
|
| 47 |
46
|
adantr |
|
| 48 |
|
abscl |
|
| 49 |
46 48
|
syl |
|
| 50 |
49
|
recnd |
|
| 51 |
50
|
adantr |
|
| 52 |
46
|
abs00ad |
|
| 53 |
52
|
necon3bid |
|
| 54 |
53
|
biimpar |
|
| 55 |
47 51 54
|
divcld |
|
| 56 |
44 55
|
mulcld |
|
| 57 |
|
eqid |
|
| 58 |
57
|
sqreulem |
|
| 59 |
|
oveq1 |
|
| 60 |
59
|
eqeq1d |
|
| 61 |
|
fveq2 |
|
| 62 |
61
|
breq2d |
|
| 63 |
|
oveq2 |
|
| 64 |
|
neleq1 |
|
| 65 |
63 64
|
syl |
|
| 66 |
60 62 65
|
3anbi123d |
|
| 67 |
66
|
rspcev |
|
| 68 |
56 58 67
|
syl2anc |
|
| 69 |
68
|
ex |
|
| 70 |
40 69
|
pm2.61dne |
|
| 71 |
|
sqrmo |
|
| 72 |
|
reu5 |
|
| 73 |
70 71 72
|
sylanbrc |
|