Step |
Hyp |
Ref |
Expression |
1 |
|
abscl |
|
2 |
1
|
recnd |
|
3 |
|
subneg |
|
4 |
2 3
|
mpancom |
|
5 |
4
|
eqeq1d |
|
6 |
|
negcl |
|
7 |
2 6
|
subeq0ad |
|
8 |
5 7
|
bitr3d |
|
9 |
|
ax-icn |
|
10 |
|
absge0 |
|
11 |
1 10
|
jca |
|
12 |
|
eleq1 |
|
13 |
|
breq2 |
|
14 |
12 13
|
anbi12d |
|
15 |
11 14
|
syl5ib |
|
16 |
15
|
impcom |
|
17 |
|
resqrtcl |
|
18 |
16 17
|
syl |
|
19 |
18
|
recnd |
|
20 |
|
mulcl |
|
21 |
9 19 20
|
sylancr |
|
22 |
|
sqrtneglem |
|
23 |
16 22
|
syl |
|
24 |
|
negneg |
|
25 |
24
|
adantr |
|
26 |
25
|
eqeq2d |
|
27 |
26
|
3anbi1d |
|
28 |
23 27
|
mpbid |
|
29 |
|
oveq1 |
|
30 |
29
|
eqeq1d |
|
31 |
|
fveq2 |
|
32 |
31
|
breq2d |
|
33 |
|
oveq2 |
|
34 |
|
neleq1 |
|
35 |
33 34
|
syl |
|
36 |
30 32 35
|
3anbi123d |
|
37 |
36
|
rspcev |
|
38 |
21 28 37
|
syl2anc |
|
39 |
38
|
ex |
|
40 |
8 39
|
sylbid |
|
41 |
|
resqrtcl |
|
42 |
1 10 41
|
syl2anc |
|
43 |
42
|
recnd |
|
44 |
43
|
adantr |
|
45 |
|
addcl |
|
46 |
2 45
|
mpancom |
|
47 |
46
|
adantr |
|
48 |
|
abscl |
|
49 |
46 48
|
syl |
|
50 |
49
|
recnd |
|
51 |
50
|
adantr |
|
52 |
46
|
abs00ad |
|
53 |
52
|
necon3bid |
|
54 |
53
|
biimpar |
|
55 |
47 51 54
|
divcld |
|
56 |
44 55
|
mulcld |
|
57 |
|
eqid |
|
58 |
57
|
sqreulem |
|
59 |
|
oveq1 |
|
60 |
59
|
eqeq1d |
|
61 |
|
fveq2 |
|
62 |
61
|
breq2d |
|
63 |
|
oveq2 |
|
64 |
|
neleq1 |
|
65 |
63 64
|
syl |
|
66 |
60 62 65
|
3anbi123d |
|
67 |
66
|
rspcev |
|
68 |
56 58 67
|
syl2anc |
|
69 |
68
|
ex |
|
70 |
40 69
|
pm2.61dne |
|
71 |
|
sqrmo |
|
72 |
|
reu5 |
|
73 |
70 71 72
|
sylanbrc |
|