Metamath Proof Explorer


Theorem sqreu

Description: Existence and uniqueness for the square root function in general. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion sqreu A ∃! x x 2 = A 0 x i x +

Proof

Step Hyp Ref Expression
1 abscl A A
2 1 recnd A A
3 subneg A A A A = A + A
4 2 3 mpancom A A A = A + A
5 4 eqeq1d A A A = 0 A + A = 0
6 negcl A A
7 2 6 subeq0ad A A A = 0 A = A
8 5 7 bitr3d A A + A = 0 A = A
9 ax-icn i
10 absge0 A 0 A
11 1 10 jca A A 0 A
12 eleq1 A = A A A
13 breq2 A = A 0 A 0 A
14 12 13 anbi12d A = A A 0 A A 0 A
15 11 14 syl5ib A = A A A 0 A
16 15 impcom A A = A A 0 A
17 resqrtcl A 0 A A
18 16 17 syl A A = A A
19 18 recnd A A = A A
20 mulcl i A i A
21 9 19 20 sylancr A A = A i A
22 sqrtneglem A 0 A i A 2 = A 0 i A i i A +
23 16 22 syl A A = A i A 2 = A 0 i A i i A +
24 negneg A A = A
25 24 adantr A A = A A = A
26 25 eqeq2d A A = A i A 2 = A i A 2 = A
27 26 3anbi1d A A = A i A 2 = A 0 i A i i A + i A 2 = A 0 i A i i A +
28 23 27 mpbid A A = A i A 2 = A 0 i A i i A +
29 oveq1 x = i A x 2 = i A 2
30 29 eqeq1d x = i A x 2 = A i A 2 = A
31 fveq2 x = i A x = i A
32 31 breq2d x = i A 0 x 0 i A
33 oveq2 x = i A i x = i i A
34 neleq1 i x = i i A i x + i i A +
35 33 34 syl x = i A i x + i i A +
36 30 32 35 3anbi123d x = i A x 2 = A 0 x i x + i A 2 = A 0 i A i i A +
37 36 rspcev i A i A 2 = A 0 i A i i A + x x 2 = A 0 x i x +
38 21 28 37 syl2anc A A = A x x 2 = A 0 x i x +
39 38 ex A A = A x x 2 = A 0 x i x +
40 8 39 sylbid A A + A = 0 x x 2 = A 0 x i x +
41 resqrtcl A 0 A A
42 1 10 41 syl2anc A A
43 42 recnd A A
44 43 adantr A A + A 0 A
45 addcl A A A + A
46 2 45 mpancom A A + A
47 46 adantr A A + A 0 A + A
48 abscl A + A A + A
49 46 48 syl A A + A
50 49 recnd A A + A
51 50 adantr A A + A 0 A + A
52 46 abs00ad A A + A = 0 A + A = 0
53 52 necon3bid A A + A 0 A + A 0
54 53 biimpar A A + A 0 A + A 0
55 47 51 54 divcld A A + A 0 A + A A + A
56 44 55 mulcld A A + A 0 A A + A A + A
57 eqid A A + A A + A = A A + A A + A
58 57 sqreulem A A + A 0 A A + A A + A 2 = A 0 A A + A A + A i A A + A A + A +
59 oveq1 x = A A + A A + A x 2 = A A + A A + A 2
60 59 eqeq1d x = A A + A A + A x 2 = A A A + A A + A 2 = A
61 fveq2 x = A A + A A + A x = A A + A A + A
62 61 breq2d x = A A + A A + A 0 x 0 A A + A A + A
63 oveq2 x = A A + A A + A i x = i A A + A A + A
64 neleq1 i x = i A A + A A + A i x + i A A + A A + A +
65 63 64 syl x = A A + A A + A i x + i A A + A A + A +
66 60 62 65 3anbi123d x = A A + A A + A x 2 = A 0 x i x + A A + A A + A 2 = A 0 A A + A A + A i A A + A A + A +
67 66 rspcev A A + A A + A A A + A A + A 2 = A 0 A A + A A + A i A A + A A + A + x x 2 = A 0 x i x +
68 56 58 67 syl2anc A A + A 0 x x 2 = A 0 x i x +
69 68 ex A A + A 0 x x 2 = A 0 x i x +
70 40 69 pm2.61dne A x x 2 = A 0 x i x +
71 sqrmo A * x x 2 = A 0 x i x +
72 reu5 ∃! x x 2 = A 0 x i x + x x 2 = A 0 x i x + * x x 2 = A 0 x i x +
73 70 71 72 sylanbrc A ∃! x x 2 = A 0 x i x +