Metamath Proof Explorer


Theorem sqrlem2

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses sqrlem1.1 S = x + | x 2 A
sqrlem1.2 B = sup S <
Assertion sqrlem2 A + A 1 A S

Proof

Step Hyp Ref Expression
1 sqrlem1.1 S = x + | x 2 A
2 sqrlem1.2 B = sup S <
3 simpl A + A 1 A +
4 rpre A + A
5 rpgt0 A + 0 < A
6 1re 1
7 lemul1 A 1 A 0 < A A 1 A A 1 A
8 6 7 mp3an2 A A 0 < A A 1 A A 1 A
9 4 4 5 8 syl12anc A + A 1 A A 1 A
10 9 biimpa A + A 1 A A 1 A
11 rpcn A + A
12 11 adantr A + A 1 A
13 sqval A A 2 = A A
14 13 eqcomd A A A = A 2
15 12 14 syl A + A 1 A A = A 2
16 11 mulid2d A + 1 A = A
17 16 adantr A + A 1 1 A = A
18 10 15 17 3brtr3d A + A 1 A 2 A
19 oveq1 x = A x 2 = A 2
20 19 breq1d x = A x 2 A A 2 A
21 20 1 elrab2 A S A + A 2 A
22 3 18 21 sylanbrc A + A 1 A S