Metamath Proof Explorer


Theorem sqrlem3

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses sqrlem1.1 S = x + | x 2 A
sqrlem1.2 B = sup S <
Assertion sqrlem3 A + A 1 S S z y S y z

Proof

Step Hyp Ref Expression
1 sqrlem1.1 S = x + | x 2 A
2 sqrlem1.2 B = sup S <
3 ssrab2 x + | x 2 A +
4 rpssre +
5 3 4 sstri x + | x 2 A
6 1 5 eqsstri S
7 6 a1i A + A 1 S
8 1 2 sqrlem2 A + A 1 A S
9 8 ne0d A + A 1 S
10 1re 1
11 1 2 sqrlem1 A + A 1 y S y 1
12 brralrspcev 1 y S y 1 z y S y z
13 10 11 12 sylancr A + A 1 z y S y z
14 7 9 13 3jca A + A 1 S S z y S y z