Metamath Proof Explorer


Theorem sqrlem4

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses sqrlem1.1 S = x + | x 2 A
sqrlem1.2 B = sup S <
Assertion sqrlem4 A + A 1 B + B 1

Proof

Step Hyp Ref Expression
1 sqrlem1.1 S = x + | x 2 A
2 sqrlem1.2 B = sup S <
3 1 2 sqrlem3 A + A 1 S S y z S z y
4 suprcl S S y z S z y sup S <
5 3 4 syl A + A 1 sup S <
6 2 5 eqeltrid A + A 1 B
7 rpgt0 A + 0 < A
8 7 adantr A + A 1 0 < A
9 1 2 sqrlem2 A + A 1 A S
10 suprub S S y z S z y A S A sup S <
11 3 9 10 syl2anc A + A 1 A sup S <
12 11 2 breqtrrdi A + A 1 A B
13 0re 0
14 rpre A + A
15 ltletr 0 A B 0 < A A B 0 < B
16 13 14 6 15 mp3an2ani A + A 1 0 < A A B 0 < B
17 8 12 16 mp2and A + A 1 0 < B
18 6 17 elrpd A + A 1 B +
19 1 2 sqrlem1 A + A 1 z S z 1
20 1re 1
21 suprleub S S y z S z y 1 sup S < 1 z S z 1
22 3 20 21 sylancl A + A 1 sup S < 1 z S z 1
23 19 22 mpbird A + A 1 sup S < 1
24 2 23 eqbrtrid A + A 1 B 1
25 18 24 jca A + A 1 B + B 1