Metamath Proof Explorer


Theorem sqrlem5

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses sqrlem1.1 S = x + | x 2 A
sqrlem1.2 B = sup S <
sqrlem5.3 T = y | a S b S y = a b
Assertion sqrlem5 A + A 1 T T v u T u v B 2 = sup T <

Proof

Step Hyp Ref Expression
1 sqrlem1.1 S = x + | x 2 A
2 sqrlem1.2 B = sup S <
3 sqrlem5.3 T = y | a S b S y = a b
4 1 ssrab3 S +
5 4 sseli v S v +
6 5 rpge0d v S 0 v
7 6 rgen v S 0 v
8 1 2 sqrlem3 A + A 1 S S v z S z v
9 pm4.24 v S 0 v v S 0 v v S 0 v
10 9 3anbi1i v S 0 v S S v z S z v S S v z S z v v S 0 v v S 0 v S S v z S z v S S v z S z v
11 3 10 supmullem2 v S 0 v S S v z S z v S S v z S z v T T v u T u v
12 7 8 8 11 mp3an2i A + A 1 T T v u T u v
13 1 2 sqrlem4 A + A 1 B + B 1
14 rpre B + B
15 14 adantr B + B 1 B
16 13 15 syl A + A 1 B
17 16 recnd A + A 1 B
18 17 sqvald A + A 1 B 2 = B B
19 2 2 oveq12i B B = sup S < sup S <
20 3 10 supmul v S 0 v S S v z S z v S S v z S z v sup S < sup S < = sup T <
21 7 8 8 20 mp3an2i A + A 1 sup S < sup S < = sup T <
22 19 21 eqtrid A + A 1 B B = sup T <
23 18 22 eqtrd A + A 1 B 2 = sup T <
24 12 23 jca A + A 1 T T v u T u v B 2 = sup T <