Metamath Proof Explorer


Theorem sqrlem6

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Hypotheses sqrlem1.1 S = x + | x 2 A
sqrlem1.2 B = sup S <
sqrlem5.3 T = y | a S b S y = a b
Assertion sqrlem6 A + A 1 B 2 A

Proof

Step Hyp Ref Expression
1 sqrlem1.1 S = x + | x 2 A
2 sqrlem1.2 B = sup S <
3 sqrlem5.3 T = y | a S b S y = a b
4 1 2 3 sqrlem5 A + A 1 T T v u T u v B 2 = sup T <
5 4 simprd A + A 1 B 2 = sup T <
6 vex v V
7 eqeq1 y = v y = a b v = a b
8 7 2rexbidv y = v a S b S y = a b a S b S v = a b
9 6 8 3 elab2 v T a S b S v = a b
10 oveq1 x = a x 2 = a 2
11 10 breq1d x = a x 2 A a 2 A
12 11 1 elrab2 a S a + a 2 A
13 12 simplbi a S a +
14 oveq1 x = b x 2 = b 2
15 14 breq1d x = b x 2 A b 2 A
16 15 1 elrab2 b S b + b 2 A
17 16 simplbi b S b +
18 rpre a + a
19 18 adantr a + b + a
20 rpre b + b
21 20 adantl a + b + b
22 rpgt0 b + 0 < b
23 22 adantl a + b + 0 < b
24 lemul1 a b b 0 < b a b a b b b
25 19 21 21 23 24 syl112anc a + b + a b a b b b
26 13 17 25 syl2an a S b S a b a b b b
27 17 rpcnd b S b
28 27 sqvald b S b 2 = b b
29 28 breq2d b S a b b 2 a b b b
30 29 adantl a S b S a b b 2 a b b b
31 26 30 bitr4d a S b S a b a b b 2
32 31 adantl A + A 1 a S b S a b a b b 2
33 16 simprbi b S b 2 A
34 33 ad2antll A + A 1 a S b S b 2 A
35 13 rpred a S a
36 17 rpred b S b
37 remulcl a b a b
38 35 36 37 syl2an a S b S a b
39 38 adantl A + A 1 a S b S a b
40 36 resqcld b S b 2
41 40 ad2antll A + A 1 a S b S b 2
42 rpre A + A
43 42 ad2antrr A + A 1 a S b S A
44 letr a b b 2 A a b b 2 b 2 A a b A
45 39 41 43 44 syl3anc A + A 1 a S b S a b b 2 b 2 A a b A
46 34 45 mpan2d A + A 1 a S b S a b b 2 a b A
47 32 46 sylbid A + A 1 a S b S a b a b A
48 rpgt0 a + 0 < a
49 48 adantr a + b + 0 < a
50 lemul2 b a a 0 < a b a a b a a
51 21 19 19 49 50 syl112anc a + b + b a a b a a
52 13 17 51 syl2an a S b S b a a b a a
53 13 rpcnd a S a
54 53 sqvald a S a 2 = a a
55 54 breq2d a S a b a 2 a b a a
56 55 adantr a S b S a b a 2 a b a a
57 52 56 bitr4d a S b S b a a b a 2
58 57 adantl A + A 1 a S b S b a a b a 2
59 12 simprbi a S a 2 A
60 59 ad2antrl A + A 1 a S b S a 2 A
61 35 resqcld a S a 2
62 61 ad2antrl A + A 1 a S b S a 2
63 letr a b a 2 A a b a 2 a 2 A a b A
64 39 62 43 63 syl3anc A + A 1 a S b S a b a 2 a 2 A a b A
65 60 64 mpan2d A + A 1 a S b S a b a 2 a b A
66 58 65 sylbid A + A 1 a S b S b a a b A
67 1 2 sqrlem3 A + A 1 S S y v S v y
68 67 simp1d A + A 1 S
69 68 sseld A + A 1 a S a
70 68 sseld A + A 1 b S b
71 69 70 anim12d A + A 1 a S b S a b
72 71 imp A + A 1 a S b S a b
73 letric a b a b b a
74 72 73 syl A + A 1 a S b S a b b a
75 47 66 74 mpjaod A + A 1 a S b S a b A
76 75 ex A + A 1 a S b S a b A
77 breq1 v = a b v A a b A
78 77 biimprcd a b A v = a b v A
79 76 78 syl6 A + A 1 a S b S v = a b v A
80 79 rexlimdvv A + A 1 a S b S v = a b v A
81 9 80 syl5bi A + A 1 v T v A
82 81 ralrimiv A + A 1 v T v A
83 4 simpld A + A 1 T T v u T u v
84 42 adantr A + A 1 A
85 suprleub T T v u T u v A sup T < A v T v A
86 83 84 85 syl2anc A + A 1 sup T < A v T v A
87 82 86 mpbird A + A 1 sup T < A
88 5 87 eqbrtrd A + A 1 B 2 A