Metamath Proof Explorer


Theorem sqrlem7

Description: Lemma for 01sqrex . (Contributed by Mario Carneiro, 10-Jul-2013) (Proof shortened by AV, 9-Jul-2022)

Ref Expression
Hypotheses sqrlem1.1 S = x + | x 2 A
sqrlem1.2 B = sup S <
sqrlem5.3 T = y | a S b S y = a b
Assertion sqrlem7 A + A 1 B 2 = A

Proof

Step Hyp Ref Expression
1 sqrlem1.1 S = x + | x 2 A
2 sqrlem1.2 B = sup S <
3 sqrlem5.3 T = y | a S b S y = a b
4 1 2 3 sqrlem6 A + A 1 B 2 A
5 1 2 sqrlem3 A + A 1 S S y z S z y
6 5 adantr A + A 1 B 2 < A S S y z S z y
7 1 2 sqrlem4 A + A 1 B + B 1
8 7 adantr A + A 1 B 2 < A B + B 1
9 8 simpld A + A 1 B 2 < A B +
10 rpre A + A
11 10 adantr A + A 1 A
12 rpre B + B
13 12 adantr B + B 1 B
14 7 13 syl A + A 1 B
15 14 resqcld A + A 1 B 2
16 11 15 resubcld A + A 1 A B 2
17 16 adantr A + A 1 B 2 < A A B 2
18 15 11 posdifd A + A 1 B 2 < A 0 < A B 2
19 18 biimpa A + A 1 B 2 < A 0 < A B 2
20 17 19 elrpd A + A 1 B 2 < A A B 2 +
21 3rp 3 +
22 rpdivcl A B 2 + 3 + A B 2 3 +
23 20 21 22 sylancl A + A 1 B 2 < A A B 2 3 +
24 9 23 rpaddcld A + A 1 B 2 < A B + A B 2 3 +
25 14 adantr A + A 1 B 2 < A B
26 25 recnd A + A 1 B 2 < A B
27 3nn 3
28 nndivre A B 2 3 A B 2 3
29 16 27 28 sylancl A + A 1 A B 2 3
30 29 adantr A + A 1 B 2 < A A B 2 3
31 30 recnd A + A 1 B 2 < A A B 2 3
32 binom2 B A B 2 3 B + A B 2 3 2 = B 2 + 2 B A B 2 3 + A B 2 3 2
33 26 31 32 syl2anc A + A 1 B 2 < A B + A B 2 3 2 = B 2 + 2 B A B 2 3 + A B 2 3 2
34 15 adantr A + A 1 B 2 < A B 2
35 34 recnd A + A 1 B 2 < A B 2
36 2re 2
37 25 30 remulcld A + A 1 B 2 < A B A B 2 3
38 remulcl 2 B A B 2 3 2 B A B 2 3
39 36 37 38 sylancr A + A 1 B 2 < A 2 B A B 2 3
40 39 recnd A + A 1 B 2 < A 2 B A B 2 3
41 30 resqcld A + A 1 B 2 < A A B 2 3 2
42 41 recnd A + A 1 B 2 < A A B 2 3 2
43 35 40 42 addassd A + A 1 B 2 < A B 2 + 2 B A B 2 3 + A B 2 3 2 = B 2 + 2 B A B 2 3 + A B 2 3 2
44 33 43 eqtrd A + A 1 B 2 < A B + A B 2 3 2 = B 2 + 2 B A B 2 3 + A B 2 3 2
45 2cn 2
46 mulass 2 B A B 2 3 2 B A B 2 3 = 2 B A B 2 3
47 45 26 31 46 mp3an2i A + A 1 B 2 < A 2 B A B 2 3 = 2 B A B 2 3
48 47 eqcomd A + A 1 B 2 < A 2 B A B 2 3 = 2 B A B 2 3
49 31 sqvald A + A 1 B 2 < A A B 2 3 2 = A B 2 3 A B 2 3
50 48 49 oveq12d A + A 1 B 2 < A 2 B A B 2 3 + A B 2 3 2 = 2 B A B 2 3 + A B 2 3 A B 2 3
51 remulcl 2 B 2 B
52 36 25 51 sylancr A + A 1 B 2 < A 2 B
53 52 recnd A + A 1 B 2 < A 2 B
54 53 31 31 adddird A + A 1 B 2 < A 2 B + A B 2 3 A B 2 3 = 2 B A B 2 3 + A B 2 3 A B 2 3
55 50 54 eqtr4d A + A 1 B 2 < A 2 B A B 2 3 + A B 2 3 2 = 2 B + A B 2 3 A B 2 3
56 7 simprd A + A 1 B 1
57 1red A + A 1 1
58 2rp 2 +
59 58 a1i A + A 1 2 +
60 14 57 59 lemul2d A + A 1 B 1 2 B 2 1
61 56 60 mpbid A + A 1 2 B 2 1
62 61 adantr A + A 1 B 2 < A 2 B 2 1
63 2t1e2 2 1 = 2
64 62 63 breqtrdi A + A 1 B 2 < A 2 B 2
65 11 adantr A + A 1 B 2 < A A
66 1red A + A 1 B 2 < A 1
67 25 sqge0d A + A 1 B 2 < A 0 B 2
68 65 34 addge01d A + A 1 B 2 < A 0 B 2 A A + B 2
69 67 68 mpbid A + A 1 B 2 < A A A + B 2
70 65 34 65 lesubaddd A + A 1 B 2 < A A B 2 A A A + B 2
71 69 70 mpbird A + A 1 B 2 < A A B 2 A
72 simplr A + A 1 B 2 < A A 1
73 17 65 66 71 72 letrd A + A 1 B 2 < A A B 2 1
74 1le3 1 3
75 1re 1
76 3re 3
77 letr A B 2 1 3 A B 2 1 1 3 A B 2 3
78 75 76 77 mp3an23 A B 2 A B 2 1 1 3 A B 2 3
79 17 78 syl A + A 1 B 2 < A A B 2 1 1 3 A B 2 3
80 74 79 mpan2i A + A 1 B 2 < A A B 2 1 A B 2 3
81 73 80 mpd A + A 1 B 2 < A A B 2 3
82 3t1e3 3 1 = 3
83 81 82 breqtrrdi A + A 1 B 2 < A A B 2 3 1
84 3pos 0 < 3
85 ledivmul A B 2 1 3 0 < 3 A B 2 3 1 A B 2 3 1
86 75 85 mp3an2 A B 2 3 0 < 3 A B 2 3 1 A B 2 3 1
87 76 84 86 mpanr12 A B 2 A B 2 3 1 A B 2 3 1
88 17 87 syl A + A 1 B 2 < A A B 2 3 1 A B 2 3 1
89 83 88 mpbird A + A 1 B 2 < A A B 2 3 1
90 le2add 2 B A B 2 3 2 1 2 B 2 A B 2 3 1 2 B + A B 2 3 2 + 1
91 36 75 90 mpanr12 2 B A B 2 3 2 B 2 A B 2 3 1 2 B + A B 2 3 2 + 1
92 52 30 91 syl2anc A + A 1 B 2 < A 2 B 2 A B 2 3 1 2 B + A B 2 3 2 + 1
93 64 89 92 mp2and A + A 1 B 2 < A 2 B + A B 2 3 2 + 1
94 df-3 3 = 2 + 1
95 93 94 breqtrrdi A + A 1 B 2 < A 2 B + A B 2 3 3
96 52 30 readdcld A + A 1 B 2 < A 2 B + A B 2 3
97 76 a1i A + A 1 B 2 < A 3
98 96 97 23 lemul1d A + A 1 B 2 < A 2 B + A B 2 3 3 2 B + A B 2 3 A B 2 3 3 A B 2 3
99 95 98 mpbid A + A 1 B 2 < A 2 B + A B 2 3 A B 2 3 3 A B 2 3
100 17 recnd A + A 1 B 2 < A A B 2
101 3cn 3
102 3ne0 3 0
103 divcan2 A B 2 3 3 0 3 A B 2 3 = A B 2
104 101 102 103 mp3an23 A B 2 3 A B 2 3 = A B 2
105 100 104 syl A + A 1 B 2 < A 3 A B 2 3 = A B 2
106 99 105 breqtrd A + A 1 B 2 < A 2 B + A B 2 3 A B 2 3 A B 2
107 55 106 eqbrtrd A + A 1 B 2 < A 2 B A B 2 3 + A B 2 3 2 A B 2
108 39 41 readdcld A + A 1 B 2 < A 2 B A B 2 3 + A B 2 3 2
109 34 108 65 leaddsub2d A + A 1 B 2 < A B 2 + 2 B A B 2 3 + A B 2 3 2 A 2 B A B 2 3 + A B 2 3 2 A B 2
110 107 109 mpbird A + A 1 B 2 < A B 2 + 2 B A B 2 3 + A B 2 3 2 A
111 44 110 eqbrtrd A + A 1 B 2 < A B + A B 2 3 2 A
112 oveq1 y = B + A B 2 3 y 2 = B + A B 2 3 2
113 112 breq1d y = B + A B 2 3 y 2 A B + A B 2 3 2 A
114 oveq1 x = y x 2 = y 2
115 114 breq1d x = y x 2 A y 2 A
116 115 cbvrabv x + | x 2 A = y + | y 2 A
117 1 116 eqtri S = y + | y 2 A
118 113 117 elrab2 B + A B 2 3 S B + A B 2 3 + B + A B 2 3 2 A
119 24 111 118 sylanbrc A + A 1 B 2 < A B + A B 2 3 S
120 suprub S S y z S z y B + A B 2 3 S B + A B 2 3 sup S <
121 120 2 breqtrrdi S S y z S z y B + A B 2 3 S B + A B 2 3 B
122 6 119 121 syl2anc A + A 1 B 2 < A B + A B 2 3 B
123 23 rpgt0d A + A 1 B 2 < A 0 < A B 2 3
124 29 14 ltaddposd A + A 1 0 < A B 2 3 B < B + A B 2 3
125 14 29 readdcld A + A 1 B + A B 2 3
126 14 125 ltnled A + A 1 B < B + A B 2 3 ¬ B + A B 2 3 B
127 124 126 bitrd A + A 1 0 < A B 2 3 ¬ B + A B 2 3 B
128 127 biimpa A + A 1 0 < A B 2 3 ¬ B + A B 2 3 B
129 123 128 syldan A + A 1 B 2 < A ¬ B + A B 2 3 B
130 122 129 pm2.65da A + A 1 ¬ B 2 < A
131 15 11 eqleltd A + A 1 B 2 = A B 2 A ¬ B 2 < A
132 4 130 131 mpbir2and A + A 1 B 2 = A