Metamath Proof Explorer


Theorem sqrt0

Description: Square root of zero. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion sqrt0 0 = 0

Proof

Step Hyp Ref Expression
1 0cn 0
2 sqrtval 0 0 = ι x | x 2 = 0 0 x i x +
3 1 2 ax-mp 0 = ι x | x 2 = 0 0 x i x +
4 id 0 0
5 sqr0lem x x 2 = 0 0 x i x + x = 0
6 5 biimpi x x 2 = 0 0 x i x + x = 0
7 6 ex x x 2 = 0 0 x i x + x = 0
8 simpr x x 2 = 0 0 x i x + x 2 = 0 0 x i x +
9 5 8 sylbir x = 0 x 2 = 0 0 x i x +
10 7 9 impbid1 x x 2 = 0 0 x i x + x = 0
11 10 adantl 0 x x 2 = 0 0 x i x + x = 0
12 4 11 riota5 0 ι x | x 2 = 0 0 x i x + = 0
13 1 12 ax-mp ι x | x 2 = 0 0 x i x + = 0
14 3 13 eqtri 0 = 0