Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
sqrt0
Next ⟩
sqrlem1
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqrt0
Description:
Square root of zero.
(Contributed by
Mario Carneiro
, 9-Jul-2013)
Ref
Expression
Assertion
sqrt0
⊢
0
=
0
Proof
Step
Hyp
Ref
Expression
1
0cn
⊢
0
∈
ℂ
2
sqrtval
⊢
0
∈
ℂ
→
0
=
ι
x
∈
ℂ
|
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
3
1
2
ax-mp
⊢
0
=
ι
x
∈
ℂ
|
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
4
id
⊢
0
∈
ℂ
→
0
∈
ℂ
5
sqr0lem
⊢
x
∈
ℂ
∧
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
↔
x
=
0
6
5
biimpi
⊢
x
∈
ℂ
∧
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
→
x
=
0
7
6
ex
⊢
x
∈
ℂ
→
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
→
x
=
0
8
simpr
⊢
x
∈
ℂ
∧
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
→
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
9
5
8
sylbir
⊢
x
=
0
→
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
10
7
9
impbid1
⊢
x
∈
ℂ
→
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
↔
x
=
0
11
10
adantl
⊢
0
∈
ℂ
∧
x
∈
ℂ
→
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
↔
x
=
0
12
4
11
riota5
⊢
0
∈
ℂ
→
ι
x
∈
ℂ
|
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
0
13
1
12
ax-mp
⊢
ι
x
∈
ℂ
|
x
2
=
0
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
0
14
3
13
eqtri
⊢
0
=
0