Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
sqrt11
Next ⟩
sqrt00
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqrt11
Description:
The square root function is one-to-one.
(Contributed by
Scott Fenton
, 11-Jun-2013)
Ref
Expression
Assertion
sqrt11
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
=
B
↔
A
=
B
Proof
Step
Hyp
Ref
Expression
1
resqrtcl
⊢
A
∈
ℝ
∧
0
≤
A
→
A
∈
ℝ
2
sqrtge0
⊢
A
∈
ℝ
∧
0
≤
A
→
0
≤
A
3
1
2
jca
⊢
A
∈
ℝ
∧
0
≤
A
→
A
∈
ℝ
∧
0
≤
A
4
resqrtcl
⊢
B
∈
ℝ
∧
0
≤
B
→
B
∈
ℝ
5
sqrtge0
⊢
B
∈
ℝ
∧
0
≤
B
→
0
≤
B
6
4
5
jca
⊢
B
∈
ℝ
∧
0
≤
B
→
B
∈
ℝ
∧
0
≤
B
7
sq11
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
2
=
B
2
↔
A
=
B
8
3
6
7
syl2an
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
2
=
B
2
↔
A
=
B
9
resqrtth
⊢
A
∈
ℝ
∧
0
≤
A
→
A
2
=
A
10
resqrtth
⊢
B
∈
ℝ
∧
0
≤
B
→
B
2
=
B
11
9
10
eqeqan12d
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
2
=
B
2
↔
A
=
B
12
8
11
bitr3d
⊢
A
∈
ℝ
∧
0
≤
A
∧
B
∈
ℝ
∧
0
≤
B
→
A
=
B
↔
A
=
B