Metamath Proof Explorer


Theorem sqrt11

Description: The square root function is one-to-one. (Contributed by Scott Fenton, 11-Jun-2013)

Ref Expression
Assertion sqrt11 A 0 A B 0 B A = B A = B

Proof

Step Hyp Ref Expression
1 resqrtcl A 0 A A
2 sqrtge0 A 0 A 0 A
3 1 2 jca A 0 A A 0 A
4 resqrtcl B 0 B B
5 sqrtge0 B 0 B 0 B
6 4 5 jca B 0 B B 0 B
7 sq11 A 0 A B 0 B A 2 = B 2 A = B
8 3 6 7 syl2an A 0 A B 0 B A 2 = B 2 A = B
9 resqrtth A 0 A A 2 = A
10 resqrtth B 0 B B 2 = B
11 9 10 eqeqan12d A 0 A B 0 B A 2 = B 2 A = B
12 8 11 bitr3d A 0 A B 0 B A = B A = B