Metamath Proof Explorer


Theorem sqrt2cxp2logb9e3

Description: The square root of two to the power of the logarithm of nine to base two is three. ( sqrt2 ) and ( 2 logb 9 ) are irrational numbers (see sqrt2irr0 resp. 2logb9irr ), satisfying the statement in 2irrexpqALT . (Contributed by AV, 29-Dec-2022)

Ref Expression
Assertion sqrt2cxp2logb9e3 2 log 2 9 = 3

Proof

Step Hyp Ref Expression
1 2cn 2
2 cxpsqrt 2 2 1 2 = 2
3 1 2 ax-mp 2 1 2 = 2
4 3 eqcomi 2 = 2 1 2
5 4 oveq1i 2 log 2 9 = 2 1 2 log 2 9
6 2rp 2 +
7 halfre 1 2
8 2z 2
9 uzid 2 2 2
10 8 9 ax-mp 2 2
11 9nn 9
12 nnrp 9 9 +
13 11 12 ax-mp 9 +
14 relogbzcl 2 2 9 + log 2 9
15 10 13 14 mp2an log 2 9
16 cxpcom 2 + 1 2 log 2 9 2 1 2 log 2 9 = 2 log 2 9 1 2
17 6 7 15 16 mp3an 2 1 2 log 2 9 = 2 log 2 9 1 2
18 15 recni log 2 9
19 cxpcl 2 log 2 9 2 log 2 9
20 1 18 19 mp2an 2 log 2 9
21 cxpsqrt 2 log 2 9 2 log 2 9 1 2 = 2 log 2 9
22 20 21 ax-mp 2 log 2 9 1 2 = 2 log 2 9
23 5 17 22 3eqtri 2 log 2 9 = 2 log 2 9
24 2ne0 2 0
25 1ne2 1 2
26 25 necomi 2 1
27 eldifpr 2 0 1 2 2 0 2 1
28 1 24 26 27 mpbir3an 2 0 1
29 9cn 9
30 9re 9
31 9pos 0 < 9
32 30 31 gt0ne0ii 9 0
33 eldifsn 9 0 9 9 0
34 29 32 33 mpbir2an 9 0
35 cxplogb 2 0 1 9 0 2 log 2 9 = 9
36 28 34 35 mp2an 2 log 2 9 = 9
37 36 fveq2i 2 log 2 9 = 9
38 sqrt9 9 = 3
39 23 37 38 3eqtri 2 log 2 9 = 3