Step |
Hyp |
Ref |
Expression |
1 |
|
peano2nn |
|
2 |
|
breq2 |
|
3 |
2
|
imbi1d |
|
4 |
3
|
ralbidv |
|
5 |
|
breq2 |
|
6 |
5
|
imbi1d |
|
7 |
6
|
ralbidv |
|
8 |
|
breq2 |
|
9 |
8
|
imbi1d |
|
10 |
9
|
ralbidv |
|
11 |
|
nnnlt1 |
|
12 |
11
|
pm2.21d |
|
13 |
12
|
rgen |
|
14 |
|
nnrp |
|
15 |
|
rphalflt |
|
16 |
14 15
|
syl |
|
17 |
|
breq1 |
|
18 |
|
oveq2 |
|
19 |
18
|
neeq2d |
|
20 |
19
|
ralbidv |
|
21 |
17 20
|
imbi12d |
|
22 |
21
|
rspcv |
|
23 |
22
|
com13 |
|
24 |
16 23
|
syl |
|
25 |
|
simpr |
|
26 |
|
zcn |
|
27 |
26
|
ad2antlr |
|
28 |
|
nncn |
|
29 |
28
|
ad2antrr |
|
30 |
|
2cnd |
|
31 |
|
nnne0 |
|
32 |
31
|
ad2antrr |
|
33 |
|
2ne0 |
|
34 |
33
|
a1i |
|
35 |
27 29 30 32 34
|
divcan7d |
|
36 |
25 35
|
eqtr4d |
|
37 |
|
simplr |
|
38 |
|
simpll |
|
39 |
37 38 25
|
sqrt2irrlem |
|
40 |
39
|
simprd |
|
41 |
39
|
simpld |
|
42 |
|
oveq1 |
|
43 |
42
|
neeq2d |
|
44 |
43
|
rspcv |
|
45 |
41 44
|
syl |
|
46 |
40 45
|
embantd |
|
47 |
46
|
necon2bd |
|
48 |
36 47
|
mpd |
|
49 |
48
|
ex |
|
50 |
49
|
necon2ad |
|
51 |
50
|
ralrimdva |
|
52 |
24 51
|
syld |
|
53 |
|
oveq1 |
|
54 |
53
|
neeq2d |
|
55 |
54
|
cbvralvw |
|
56 |
52 55
|
syl6ibr |
|
57 |
|
oveq2 |
|
58 |
57
|
neeq2d |
|
59 |
58
|
ralbidv |
|
60 |
59
|
ceqsralv |
|
61 |
56 60
|
sylibrd |
|
62 |
61
|
ancld |
|
63 |
|
nnleltp1 |
|
64 |
|
nnre |
|
65 |
|
nnre |
|
66 |
|
leloe |
|
67 |
64 65 66
|
syl2an |
|
68 |
63 67
|
bitr3d |
|
69 |
68
|
ancoms |
|
70 |
69
|
imbi1d |
|
71 |
|
jaob |
|
72 |
70 71
|
bitrdi |
|
73 |
72
|
ralbidva |
|
74 |
|
r19.26 |
|
75 |
73 74
|
bitrdi |
|
76 |
62 75
|
sylibrd |
|
77 |
4 7 10 10 13 76
|
nnind |
|
78 |
1 77
|
syl |
|
79 |
65
|
ltp1d |
|
80 |
|
breq1 |
|
81 |
|
df-ne |
|
82 |
58 81
|
bitrdi |
|
83 |
82
|
ralbidv |
|
84 |
|
ralnex |
|
85 |
83 84
|
bitrdi |
|
86 |
80 85
|
imbi12d |
|
87 |
86
|
rspcv |
|
88 |
78 79 87
|
mp2d |
|
89 |
88
|
nrex |
|
90 |
|
elq |
|
91 |
|
rexcom |
|
92 |
90 91
|
bitri |
|
93 |
89 92
|
mtbir |
|
94 |
93
|
nelir |
|