Metamath Proof Explorer


Theorem sqrtcl

Description: Closure of the square root function over the complex numbers. (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Assertion sqrtcl A A

Proof

Step Hyp Ref Expression
1 sqrtval A A = ι x | x 2 = A 0 x i x +
2 sqreu A ∃! x x 2 = A 0 x i x +
3 riotacl ∃! x x 2 = A 0 x i x + ι x | x 2 = A 0 x i x +
4 2 3 syl A ι x | x 2 = A 0 x i x +
5 1 4 eqeltrd A A