Metamath Proof Explorer


Theorem sqrtcn

Description: Continuity of the square root function. (Contributed by Mario Carneiro, 2-May-2016)

Ref Expression
Hypothesis sqrcn.d D = −∞ 0
Assertion sqrtcn D : D cn

Proof

Step Hyp Ref Expression
1 sqrcn.d D = −∞ 0
2 sqrtf :
3 2 a1i :
4 3 feqmptd = x x
5 4 reseq1d D = x x D
6 difss −∞ 0
7 1 6 eqsstri D
8 resmpt D x x D = x D x
9 7 8 mp1i x x D = x D x
10 7 sseli x D x
11 10 adantl x D x
12 cxpsqrt x x 1 2 = x
13 11 12 syl x D x 1 2 = x
14 13 eqcomd x D x = x 1 2
15 14 mpteq2dva x D x = x D x 1 2
16 5 9 15 3eqtrd D = x D x 1 2
17 eqid TopOpen fld = TopOpen fld
18 17 cnfldtopon TopOpen fld TopOn
19 18 a1i TopOpen fld TopOn
20 resttopon TopOpen fld TopOn D TopOpen fld 𝑡 D TopOn D
21 19 7 20 sylancl TopOpen fld 𝑡 D TopOn D
22 21 cnmptid x D x TopOpen fld 𝑡 D Cn TopOpen fld 𝑡 D
23 ax-1cn 1
24 halfcl 1 1 2
25 23 24 mp1i 1 2
26 21 19 25 cnmptc x D 1 2 TopOpen fld 𝑡 D Cn TopOpen fld
27 eqid TopOpen fld 𝑡 D = TopOpen fld 𝑡 D
28 1 17 27 cxpcn y D , z y z TopOpen fld 𝑡 D × t TopOpen fld Cn TopOpen fld
29 28 a1i y D , z y z TopOpen fld 𝑡 D × t TopOpen fld Cn TopOpen fld
30 oveq12 y = x z = 1 2 y z = x 1 2
31 21 22 26 21 19 29 30 cnmpt12 x D x 1 2 TopOpen fld 𝑡 D Cn TopOpen fld
32 ssid
33 18 toponrestid TopOpen fld = TopOpen fld 𝑡
34 17 27 33 cncfcn D D cn = TopOpen fld 𝑡 D Cn TopOpen fld
35 7 32 34 mp2an D cn = TopOpen fld 𝑡 D Cn TopOpen fld
36 31 35 eleqtrrdi x D x 1 2 : D cn
37 16 36 eqeltrd D : D cn
38 37 mptru D : D cn