Metamath Proof Explorer


Theorem sqrtdiv

Description: Square root distributes over division. (Contributed by Mario Carneiro, 5-May-2016)

Ref Expression
Assertion sqrtdiv A 0 A B + A B = A B

Proof

Step Hyp Ref Expression
1 rerpdivcl A B + A B
2 1 adantlr A 0 A B + A B
3 elrp B + B 0 < B
4 divge0 A 0 A B 0 < B 0 A B
5 3 4 sylan2b A 0 A B + 0 A B
6 resqrtcl A B 0 A B A B
7 2 5 6 syl2anc A 0 A B + A B
8 7 recnd A 0 A B + A B
9 rpsqrtcl B + B +
10 9 adantl A 0 A B + B +
11 10 rpcnd A 0 A B + B
12 10 rpne0d A 0 A B + B 0
13 8 11 12 divcan4d A 0 A B + A B B B = A B
14 rprege0 B + B 0 B
15 14 adantl A 0 A B + B 0 B
16 sqrtmul A B 0 A B B 0 B A B B = A B B
17 2 5 15 16 syl21anc A 0 A B + A B B = A B B
18 simpll A 0 A B + A
19 18 recnd A 0 A B + A
20 rpcn B + B
21 20 adantl A 0 A B + B
22 rpne0 B + B 0
23 22 adantl A 0 A B + B 0
24 19 21 23 divcan1d A 0 A B + A B B = A
25 24 fveq2d A 0 A B + A B B = A
26 17 25 eqtr3d A 0 A B + A B B = A
27 26 oveq1d A 0 A B + A B B B = A B
28 13 27 eqtr3d A 0 A B + A B = A B