Metamath Proof Explorer


Theorem sqrtdivd

Description: Square root distributes over division. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1 φ A
resqrcld.2 φ 0 A
sqrdivd.3 φ B +
Assertion sqrtdivd φ A B = A B

Proof

Step Hyp Ref Expression
1 resqrcld.1 φ A
2 resqrcld.2 φ 0 A
3 sqrdivd.3 φ B +
4 sqrtdiv A 0 A B + A B = A B
5 1 2 3 4 syl21anc φ A B = A B