Metamath Proof Explorer


Theorem sqrtf

Description: Mapping domain and codomain of the square root function. (Contributed by Mario Carneiro, 13-Sep-2015)

Ref Expression
Assertion sqrtf :

Proof

Step Hyp Ref Expression
1 riotaex ι y | y 2 = x 0 y i y + V
2 df-sqrt = x ι y | y 2 = x 0 y i y +
3 1 2 fnmpti Fn
4 sqrtcl x x
5 4 rgen x x
6 ffnfv : Fn x x
7 3 5 6 mpbir2an :