Metamath Proof Explorer


Theorem sqrtgt0

Description: The square root function is positive for positive input. (Contributed by Mario Carneiro, 10-Jul-2013) (Revised by Mario Carneiro, 6-Sep-2013)

Ref Expression
Assertion sqrtgt0 A 0 < A 0 < A

Proof

Step Hyp Ref Expression
1 0re 0
2 ltle 0 A 0 < A 0 A
3 1 2 mpan A 0 < A 0 A
4 3 imp A 0 < A 0 A
5 resqrtcl A 0 A A
6 4 5 syldan A 0 < A A
7 sqrtge0 A 0 A 0 A
8 4 7 syldan A 0 < A 0 A
9 gt0ne0 A 0 < A A 0
10 sq0i A = 0 A 2 = 0
11 resqrtth A 0 A A 2 = A
12 4 11 syldan A 0 < A A 2 = A
13 12 eqeq1d A 0 < A A 2 = 0 A = 0
14 10 13 syl5ib A 0 < A A = 0 A = 0
15 14 necon3d A 0 < A A 0 A 0
16 9 15 mpd A 0 < A A 0
17 6 8 16 ne0gt0d A 0 < A 0 < A