Metamath Proof Explorer


Theorem sqrtlim

Description: The inverse square root function converges to zero. (Contributed by Mario Carneiro, 18-May-2016)

Ref Expression
Assertion sqrtlim n + 1 n 0

Proof

Step Hyp Ref Expression
1 rpcn n + n
2 cxpsqrt n n 1 2 = n
3 1 2 syl n + n 1 2 = n
4 3 oveq2d n + 1 n 1 2 = 1 n
5 4 mpteq2ia n + 1 n 1 2 = n + 1 n
6 1rp 1 +
7 rphalfcl 1 + 1 2 +
8 cxplim 1 2 + n + 1 n 1 2 0
9 6 7 8 mp2b n + 1 n 1 2 0
10 5 9 eqbrtrri n + 1 n 0