Metamath Proof Explorer


Theorem sqrtmul

Description: Square root distributes over multiplication. (Contributed by NM, 30-Jul-1999) (Revised by Mario Carneiro, 29-May-2016)

Ref Expression
Assertion sqrtmul A 0 A B 0 B A B = A B

Proof

Step Hyp Ref Expression
1 simpll A 0 A B 0 B A
2 simprl A 0 A B 0 B B
3 1 2 remulcld A 0 A B 0 B A B
4 mulge0 A 0 A B 0 B 0 A B
5 resqrtcl A B 0 A B A B
6 3 4 5 syl2anc A 0 A B 0 B A B
7 resqrtcl A 0 A A
8 7 adantr A 0 A B 0 B A
9 resqrtcl B 0 B B
10 9 adantl A 0 A B 0 B B
11 8 10 remulcld A 0 A B 0 B A B
12 sqrtge0 A B 0 A B 0 A B
13 3 4 12 syl2anc A 0 A B 0 B 0 A B
14 sqrtge0 A 0 A 0 A
15 14 adantr A 0 A B 0 B 0 A
16 sqrtge0 B 0 B 0 B
17 16 adantl A 0 A B 0 B 0 B
18 8 10 15 17 mulge0d A 0 A B 0 B 0 A B
19 resqrtth A 0 A A 2 = A
20 resqrtth B 0 B B 2 = B
21 19 20 oveqan12d A 0 A B 0 B A 2 B 2 = A B
22 8 recnd A 0 A B 0 B A
23 10 recnd A 0 A B 0 B B
24 22 23 sqmuld A 0 A B 0 B A B 2 = A 2 B 2
25 resqrtth A B 0 A B A B 2 = A B
26 3 4 25 syl2anc A 0 A B 0 B A B 2 = A B
27 21 24 26 3eqtr4rd A 0 A B 0 B A B 2 = A B 2
28 6 11 13 18 27 sq11d A 0 A B 0 B A B = A B