Metamath Proof Explorer


Theorem sqrtneg

Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion sqrtneg A 0 A A = i A

Proof

Step Hyp Ref Expression
1 recn A A
2 1 adantr A 0 A A
3 2 negcld A 0 A A
4 sqrtval A A = ι x | x 2 = A 0 x i x +
5 3 4 syl A 0 A A = ι x | x 2 = A 0 x i x +
6 sqrtneglem A 0 A i A 2 = A 0 i A i i A +
7 ax-icn i
8 resqrtcl A 0 A A
9 8 recnd A 0 A A
10 mulcl i A i A
11 7 9 10 sylancr A 0 A i A
12 oveq1 x = i A x 2 = i A 2
13 12 eqeq1d x = i A x 2 = A i A 2 = A
14 fveq2 x = i A x = i A
15 14 breq2d x = i A 0 x 0 i A
16 oveq2 x = i A i x = i i A
17 neleq1 i x = i i A i x + i i A +
18 16 17 syl x = i A i x + i i A +
19 13 15 18 3anbi123d x = i A x 2 = A 0 x i x + i A 2 = A 0 i A i i A +
20 19 rspcev i A i A 2 = A 0 i A i i A + x x 2 = A 0 x i x +
21 11 6 20 syl2anc A 0 A x x 2 = A 0 x i x +
22 sqrmo A * x x 2 = A 0 x i x +
23 3 22 syl A 0 A * x x 2 = A 0 x i x +
24 reu5 ∃! x x 2 = A 0 x i x + x x 2 = A 0 x i x + * x x 2 = A 0 x i x +
25 21 23 24 sylanbrc A 0 A ∃! x x 2 = A 0 x i x +
26 19 riota2 i A ∃! x x 2 = A 0 x i x + i A 2 = A 0 i A i i A + ι x | x 2 = A 0 x i x + = i A
27 11 25 26 syl2anc A 0 A i A 2 = A 0 i A i i A + ι x | x 2 = A 0 x i x + = i A
28 6 27 mpbid A 0 A ι x | x 2 = A 0 x i x + = i A
29 5 28 eqtrd A 0 A A = i A