Metamath Proof Explorer


Theorem sqrtneglem

Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion sqrtneglem A0AiA2=A0iAiiA+

Proof

Step Hyp Ref Expression
1 ax-icn i
2 resqrtcl A0AA
3 recn AA
4 2 3 syl A0AA
5 sqmul iAiA2=i2A2
6 1 4 5 sylancr A0AiA2=i2A2
7 i2 i2=1
8 7 a1i A0Ai2=1
9 resqrtth A0AA2=A
10 8 9 oveq12d A0Ai2A2=-1A
11 recn AA
12 11 adantr A0AA
13 12 mulm1d A0A-1A=A
14 6 10 13 3eqtrd A0AiA2=A
15 renegcl AA
16 0re 0
17 reim0 AA=0
18 recn AA
19 imre AA=iA
20 18 19 syl AA=iA
21 17 20 eqtr3d A0=iA
22 eqle 00=iA0iA
23 16 21 22 sylancr A0iA
24 2 15 23 3syl A0A0iA
25 mul2neg iAiA=iA
26 1 4 25 sylancr A0AiA=iA
27 26 fveq2d A0AiA=iA
28 24 27 breqtrd A0A0iA
29 ixi ii=1
30 29 oveq1i iiA=-1A
31 mulass iiAiiA=iiA
32 1 1 31 mp3an12 AiiA=iiA
33 mulm1 A-1A=A
34 30 32 33 3eqtr3a AiiA=A
35 4 34 syl A0AiiA=A
36 sqrtge0 A0A0A
37 le0neg2 A0AA0
38 lenlt A0A0¬0<A
39 15 16 38 sylancl AA0¬0<A
40 37 39 bitrd A0A¬0<A
41 2 40 syl A0A0A¬0<A
42 36 41 mpbid A0A¬0<A
43 elrp A+A0<A
44 2 15 syl A0AA
45 44 biantrurd A0A0<AA0<A
46 43 45 bitr4id A0AA+0<A
47 42 46 mtbird A0A¬A+
48 35 47 eqneltrd A0A¬iiA+
49 df-nel iiA+¬iiA+
50 48 49 sylibr A0AiiA+
51 14 28 50 3jca A0AiA2=A0iAiiA+