Metamath Proof Explorer


Theorem sqrtneglem

Description: The square root of a negative number. (Contributed by Mario Carneiro, 9-Jul-2013)

Ref Expression
Assertion sqrtneglem A 0 A i A 2 = A 0 i A i i A +

Proof

Step Hyp Ref Expression
1 ax-icn i
2 resqrtcl A 0 A A
3 recn A A
4 2 3 syl A 0 A A
5 sqmul i A i A 2 = i 2 A 2
6 1 4 5 sylancr A 0 A i A 2 = i 2 A 2
7 i2 i 2 = 1
8 7 a1i A 0 A i 2 = 1
9 resqrtth A 0 A A 2 = A
10 8 9 oveq12d A 0 A i 2 A 2 = -1 A
11 recn A A
12 11 adantr A 0 A A
13 12 mulm1d A 0 A -1 A = A
14 6 10 13 3eqtrd A 0 A i A 2 = A
15 renegcl A A
16 0re 0
17 reim0 A A = 0
18 recn A A
19 imre A A = i A
20 18 19 syl A A = i A
21 17 20 eqtr3d A 0 = i A
22 eqle 0 0 = i A 0 i A
23 16 21 22 sylancr A 0 i A
24 2 15 23 3syl A 0 A 0 i A
25 mul2neg i A i A = i A
26 1 4 25 sylancr A 0 A i A = i A
27 26 fveq2d A 0 A i A = i A
28 24 27 breqtrd A 0 A 0 i A
29 ixi i i = 1
30 29 oveq1i i i A = -1 A
31 mulass i i A i i A = i i A
32 1 1 31 mp3an12 A i i A = i i A
33 mulm1 A -1 A = A
34 30 32 33 3eqtr3a A i i A = A
35 4 34 syl A 0 A i i A = A
36 sqrtge0 A 0 A 0 A
37 le0neg2 A 0 A A 0
38 lenlt A 0 A 0 ¬ 0 < A
39 15 16 38 sylancl A A 0 ¬ 0 < A
40 37 39 bitrd A 0 A ¬ 0 < A
41 2 40 syl A 0 A 0 A ¬ 0 < A
42 36 41 mpbid A 0 A ¬ 0 < A
43 elrp A + A 0 < A
44 2 15 syl A 0 A A
45 44 biantrurd A 0 A 0 < A A 0 < A
46 43 45 bitr4id A 0 A A + 0 < A
47 42 46 mtbird A 0 A ¬ A +
48 35 47 eqneltrd A 0 A ¬ i i A +
49 df-nel i i A + ¬ i i A +
50 48 49 sylibr A 0 A i i A +
51 14 28 50 3jca A 0 A i A 2 = A 0 i A i i A +