Metamath Proof Explorer


Theorem sqrtsq2d

Description: Relationship between square root and squares. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses resqrcld.1 φ A
resqrcld.2 φ 0 A
sqr11d.3 φ B
sqr11d.4 φ 0 B
Assertion sqrtsq2d φ A = B A = B 2

Proof

Step Hyp Ref Expression
1 resqrcld.1 φ A
2 resqrcld.2 φ 0 A
3 sqr11d.3 φ B
4 sqr11d.4 φ 0 B
5 sqrtsq2 A 0 A B 0 B A = B A = B 2
6 1 2 3 4 5 syl22anc φ A = B A = B 2