Metamath Proof Explorer


Theorem sqrtthlem

Description: Lemma for sqrtth . (Contributed by Mario Carneiro, 10-Jul-2013)

Ref Expression
Assertion sqrtthlem A A 2 = A 0 A i A +

Proof

Step Hyp Ref Expression
1 sqrtval A A = ι x | x 2 = A 0 x i x +
2 1 eqcomd A ι x | x 2 = A 0 x i x + = A
3 sqrtcl A A
4 sqreu A ∃! x x 2 = A 0 x i x +
5 oveq1 x = A x 2 = A 2
6 5 eqeq1d x = A x 2 = A A 2 = A
7 fveq2 x = A x = A
8 7 breq2d x = A 0 x 0 A
9 oveq2 x = A i x = i A
10 neleq1 i x = i A i x + i A +
11 9 10 syl x = A i x + i A +
12 6 8 11 3anbi123d x = A x 2 = A 0 x i x + A 2 = A 0 A i A +
13 12 riota2 A ∃! x x 2 = A 0 x i x + A 2 = A 0 A i A + ι x | x 2 = A 0 x i x + = A
14 3 4 13 syl2anc A A 2 = A 0 A i A + ι x | x 2 = A 0 x i x + = A
15 2 14 mpbird A A 2 = A 0 A i A +