Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
sqrtthlem
Next ⟩
sqrtf
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqrtthlem
Description:
Lemma for
sqrtth
.
(Contributed by
Mario Carneiro
, 10-Jul-2013)
Ref
Expression
Assertion
sqrtthlem
⊢
A
∈
ℂ
→
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
Proof
Step
Hyp
Ref
Expression
1
sqrtval
⊢
A
∈
ℂ
→
A
=
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
2
1
eqcomd
⊢
A
∈
ℂ
→
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
A
3
sqrtcl
⊢
A
∈
ℂ
→
A
∈
ℂ
4
sqreu
⊢
A
∈
ℂ
→
∃!
x
∈
ℂ
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
5
oveq1
⊢
x
=
A
→
x
2
=
A
2
6
5
eqeq1d
⊢
x
=
A
→
x
2
=
A
↔
A
2
=
A
7
fveq2
⊢
x
=
A
→
ℜ
⁡
x
=
ℜ
⁡
A
8
7
breq2d
⊢
x
=
A
→
0
≤
ℜ
⁡
x
↔
0
≤
ℜ
⁡
A
9
oveq2
⊢
x
=
A
→
i
⁢
x
=
i
⁢
A
10
neleq1
⊢
i
⁢
x
=
i
⁢
A
→
i
⁢
x
∉
ℝ
+
↔
i
⁢
A
∉
ℝ
+
11
9
10
syl
⊢
x
=
A
→
i
⁢
x
∉
ℝ
+
↔
i
⁢
A
∉
ℝ
+
12
6
8
11
3anbi123d
⊢
x
=
A
→
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
↔
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
13
12
riota2
⊢
A
∈
ℂ
∧
∃!
x
∈
ℂ
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
→
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
↔
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
A
14
3
4
13
syl2anc
⊢
A
∈
ℂ
→
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+
↔
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
A
15
2
14
mpbird
⊢
A
∈
ℂ
→
A
2
=
A
∧
0
≤
ℜ
⁡
A
∧
i
⁢
A
∉
ℝ
+