Database
REAL AND COMPLEX NUMBERS
Elementary real and complex functions
Square root; absolute value
sqrtval
Next ⟩
absval
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqrtval
Description:
Value of square root function.
(Contributed by
Mario Carneiro
, 8-Jul-2013)
Ref
Expression
Assertion
sqrtval
⊢
A
∈
ℂ
→
A
=
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
Proof
Step
Hyp
Ref
Expression
1
eqeq2
⊢
y
=
A
→
x
2
=
y
↔
x
2
=
A
2
1
3anbi1d
⊢
y
=
A
→
x
2
=
y
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
↔
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
3
2
riotabidv
⊢
y
=
A
→
ι
x
∈
ℂ
|
x
2
=
y
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
=
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
4
df-sqrt
⊢
√
=
y
∈
ℂ
⟼
ι
x
∈
ℂ
|
x
2
=
y
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
5
riotaex
⊢
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+
∈
V
6
3
4
5
fvmpt
⊢
A
∈
ℂ
→
A
=
ι
x
∈
ℂ
|
x
2
=
A
∧
0
≤
ℜ
⁡
x
∧
i
⁢
x
∉
ℝ
+