Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
sqsubswap
Next ⟩
sqcl
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqsubswap
Description:
Swap the order of subtraction in a square.
(Contributed by
Scott Fenton
, 10-Jun-2013)
Ref
Expression
Assertion
sqsubswap
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
2
=
B
−
A
2
Proof
Step
Hyp
Ref
Expression
1
subcl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
∈
ℂ
2
sqneg
⊢
A
−
B
∈
ℂ
→
−
A
−
B
2
=
A
−
B
2
3
1
2
syl
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
−
B
2
=
A
−
B
2
4
negsubdi2
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
−
B
=
B
−
A
5
4
oveq1d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
−
A
−
B
2
=
B
−
A
2
6
3
5
eqtr3d
⊢
A
∈
ℂ
∧
B
∈
ℂ
→
A
−
B
2
=
B
−
A
2