Database
REAL AND COMPLEX NUMBERS
Elementary integer functions
Integer powers
sqval
Next ⟩
sqneg
Metamath Proof Explorer
Ascii
Unicode
Theorem
sqval
Description:
Value of the square of a complex number.
(Contributed by
Raph Levien
, 10-Apr-2004)
Ref
Expression
Assertion
sqval
⊢
A
∈
ℂ
→
A
2
=
A
⁢
A
Proof
Step
Hyp
Ref
Expression
1
df-2
⊢
2
=
1
+
1
2
1
oveq2i
⊢
A
2
=
A
1
+
1
3
1nn0
⊢
1
∈
ℕ
0
4
expp1
⊢
A
∈
ℂ
∧
1
∈
ℕ
0
→
A
1
+
1
=
A
1
⁢
A
5
3
4
mpan2
⊢
A
∈
ℂ
→
A
1
+
1
=
A
1
⁢
A
6
2
5
eqtrid
⊢
A
∈
ℂ
→
A
2
=
A
1
⁢
A
7
exp1
⊢
A
∈
ℂ
→
A
1
=
A
8
7
oveq1d
⊢
A
∈
ℂ
→
A
1
⁢
A
=
A
⁢
A
9
6
8
eqtrd
⊢
A
∈
ℂ
→
A
2
=
A
⁢
A