Metamath Proof Explorer


Theorem sqval

Description: Value of the square of a complex number. (Contributed by Raph Levien, 10-Apr-2004)

Ref Expression
Assertion sqval A A 2 = A A

Proof

Step Hyp Ref Expression
1 df-2 2 = 1 + 1
2 1 oveq2i A 2 = A 1 + 1
3 1nn0 1 0
4 expp1 A 1 0 A 1 + 1 = A 1 A
5 3 4 mpan2 A A 1 + 1 = A 1 A
6 2 5 eqtrid A A 2 = A 1 A
7 exp1 A A 1 = A
8 7 oveq1d A A 1 A = A A
9 6 8 eqtrd A A 2 = A A