Metamath Proof Explorer


Theorem sraassa

Description: The subring algebra over a commutative ring is an associative algebra. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof shortened by SN, 21-Mar-2025)

Ref Expression
Hypothesis sraassa.a A = subringAlg W S
Assertion sraassa W CRing S SubRing W A AssAlg

Proof

Step Hyp Ref Expression
1 sraassa.a A = subringAlg W S
2 eqid Base W = Base W
3 2 subrgss S SubRing W S Base W
4 3 adantl W CRing S SubRing W S Base W
5 eqid Cntr mulGrp W = Cntr mulGrp W
6 2 5 crngbascntr W CRing Base W = Cntr mulGrp W
7 6 adantr W CRing S SubRing W Base W = Cntr mulGrp W
8 4 7 sseqtrd W CRing S SubRing W S Cntr mulGrp W
9 crngring W CRing W Ring
10 9 adantr W CRing S SubRing W W Ring
11 simpr W CRing S SubRing W S SubRing W
12 1 5 10 11 sraassab W CRing S SubRing W A AssAlg S Cntr mulGrp W
13 8 12 mpbird W CRing S SubRing W A AssAlg