Metamath Proof Explorer


Theorem sraassaOLD

Description: Obsolete version of sraassa as of 21-Mar-2025. (Contributed by Mario Carneiro, 6-Oct-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis sraassa.a A = subringAlg W S
Assertion sraassaOLD W CRing S SubRing W A AssAlg

Proof

Step Hyp Ref Expression
1 sraassa.a A = subringAlg W S
2 1 a1i W CRing S SubRing W A = subringAlg W S
3 eqid Base W = Base W
4 3 subrgss S SubRing W S Base W
5 4 adantl W CRing S SubRing W S Base W
6 2 5 srabase W CRing S SubRing W Base W = Base A
7 2 5 srasca W CRing S SubRing W W 𝑠 S = Scalar A
8 eqid W 𝑠 S = W 𝑠 S
9 8 subrgbas S SubRing W S = Base W 𝑠 S
10 9 adantl W CRing S SubRing W S = Base W 𝑠 S
11 2 5 sravsca W CRing S SubRing W W = A
12 2 5 sramulr W CRing S SubRing W W = A
13 1 sralmod S SubRing W A LMod
14 13 adantl W CRing S SubRing W A LMod
15 crngring W CRing W Ring
16 15 adantr W CRing S SubRing W W Ring
17 eqidd W CRing S SubRing W Base W = Base W
18 2 5 sraaddg W CRing S SubRing W + W = + A
19 18 oveqdr W CRing S SubRing W x Base W y Base W x + W y = x + A y
20 12 oveqdr W CRing S SubRing W x Base W y Base W x W y = x A y
21 17 6 19 20 ringpropd W CRing S SubRing W W Ring A Ring
22 16 21 mpbid W CRing S SubRing W A Ring
23 16 adantr W CRing S SubRing W x S y Base W z Base W W Ring
24 5 adantr W CRing S SubRing W x S y Base W z Base W S Base W
25 simpr1 W CRing S SubRing W x S y Base W z Base W x S
26 24 25 sseldd W CRing S SubRing W x S y Base W z Base W x Base W
27 simpr2 W CRing S SubRing W x S y Base W z Base W y Base W
28 simpr3 W CRing S SubRing W x S y Base W z Base W z Base W
29 eqid W = W
30 3 29 ringass W Ring x Base W y Base W z Base W x W y W z = x W y W z
31 23 26 27 28 30 syl13anc W CRing S SubRing W x S y Base W z Base W x W y W z = x W y W z
32 eqid mulGrp W = mulGrp W
33 32 crngmgp W CRing mulGrp W CMnd
34 33 ad2antrr W CRing S SubRing W x S y Base W z Base W mulGrp W CMnd
35 32 3 mgpbas Base W = Base mulGrp W
36 32 29 mgpplusg W = + mulGrp W
37 35 36 cmn12 mulGrp W CMnd y Base W x Base W z Base W y W x W z = x W y W z
38 34 27 26 28 37 syl13anc W CRing S SubRing W x S y Base W z Base W y W x W z = x W y W z
39 6 7 10 11 12 14 22 31 38 isassad W CRing S SubRing W A AssAlg