Metamath Proof Explorer


Theorem srabn

Description: The subring algebra over a complete normed ring is a Banach space iff the subring is a closed division ring. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Hypotheses srabn.a A = subringAlg W S
srabn.j J = TopOpen W
Assertion srabn W NrmRing W CMetSp S SubRing W A Ban S Clsd J W 𝑠 S DivRing

Proof

Step Hyp Ref Expression
1 srabn.a A = subringAlg W S
2 srabn.j J = TopOpen W
3 simp2 W NrmRing W CMetSp S SubRing W W CMetSp
4 eqidd W NrmRing W CMetSp S SubRing W Base W = Base W
5 1 a1i W NrmRing W CMetSp S SubRing W A = subringAlg W S
6 eqid Base W = Base W
7 6 subrgss S SubRing W S Base W
8 7 3ad2ant3 W NrmRing W CMetSp S SubRing W S Base W
9 5 8 srabase W NrmRing W CMetSp S SubRing W Base W = Base A
10 5 8 srads W NrmRing W CMetSp S SubRing W dist W = dist A
11 10 reseq1d W NrmRing W CMetSp S SubRing W dist W Base W × Base W = dist A Base W × Base W
12 5 8 sratopn W NrmRing W CMetSp S SubRing W TopOpen W = TopOpen A
13 4 9 11 12 cmspropd W NrmRing W CMetSp S SubRing W W CMetSp A CMetSp
14 3 13 mpbid W NrmRing W CMetSp S SubRing W A CMetSp
15 eqid Scalar A = Scalar A
16 15 isbn A Ban A NrmVec A CMetSp Scalar A CMetSp
17 3anrot A NrmVec A CMetSp Scalar A CMetSp A CMetSp Scalar A CMetSp A NrmVec
18 3anass A CMetSp Scalar A CMetSp A NrmVec A CMetSp Scalar A CMetSp A NrmVec
19 16 17 18 3bitri A Ban A CMetSp Scalar A CMetSp A NrmVec
20 19 baib A CMetSp A Ban Scalar A CMetSp A NrmVec
21 14 20 syl W NrmRing W CMetSp S SubRing W A Ban Scalar A CMetSp A NrmVec
22 5 8 srasca W NrmRing W CMetSp S SubRing W W 𝑠 S = Scalar A
23 22 eleq1d W NrmRing W CMetSp S SubRing W W 𝑠 S CMetSp Scalar A CMetSp
24 eqid W 𝑠 S = W 𝑠 S
25 24 6 2 cmsss W CMetSp S Base W W 𝑠 S CMetSp S Clsd J
26 3 8 25 syl2anc W NrmRing W CMetSp S SubRing W W 𝑠 S CMetSp S Clsd J
27 23 26 bitr3d W NrmRing W CMetSp S SubRing W Scalar A CMetSp S Clsd J
28 1 sranlm W NrmRing S SubRing W A NrmMod
29 28 3adant2 W NrmRing W CMetSp S SubRing W A NrmMod
30 15 isnvc2 A NrmVec A NrmMod Scalar A DivRing
31 30 baib A NrmMod A NrmVec Scalar A DivRing
32 29 31 syl W NrmRing W CMetSp S SubRing W A NrmVec Scalar A DivRing
33 22 eleq1d W NrmRing W CMetSp S SubRing W W 𝑠 S DivRing Scalar A DivRing
34 32 33 bitr4d W NrmRing W CMetSp S SubRing W A NrmVec W 𝑠 S DivRing
35 27 34 anbi12d W NrmRing W CMetSp S SubRing W Scalar A CMetSp A NrmVec S Clsd J W 𝑠 S DivRing
36 21 35 bitrd W NrmRing W CMetSp S SubRing W A Ban S Clsd J W 𝑠 S DivRing