Metamath Proof Explorer
Description: Distance function of a subring algebra. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)
|
|
Ref |
Expression |
|
Hypotheses |
srapart.a |
|
|
|
srapart.s |
|
|
Assertion |
srads |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
srapart.a |
|
2 |
|
srapart.s |
|
3 |
|
df-ds |
|
4 |
|
1nn0 |
|
5 |
|
2nn |
|
6 |
4 5
|
decnncl |
|
7 |
|
1nn |
|
8 |
|
2nn0 |
|
9 |
|
8nn0 |
|
10 |
|
8lt10 |
|
11 |
7 8 9 10
|
declti |
|
12 |
11
|
olci |
|
13 |
1 2 3 6 12
|
sralem |
|