Metamath Proof Explorer


Theorem sralem

Description: Lemma for srabase and similar theorems. (Contributed by Mario Carneiro, 4-Oct-2015) (Revised by Thierry Arnoux, 16-Jun-2019)

Ref Expression
Hypotheses srapart.a φ A = subringAlg W S
srapart.s φ S Base W
sralem.1 E = Slot N
sralem.2 N
sralem.3 N < 5 8 < N
Assertion sralem φ E W = E A

Proof

Step Hyp Ref Expression
1 srapart.a φ A = subringAlg W S
2 srapart.s φ S Base W
3 sralem.1 E = Slot N
4 sralem.2 N
5 sralem.3 N < 5 8 < N
6 1 adantl W V φ A = subringAlg W S
7 sraval W V S Base W subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
8 2 7 sylan2 W V φ subringAlg W S = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
9 6 8 eqtrd W V φ A = W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
10 9 fveq2d W V φ E A = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
11 3 4 ndxid E = Slot E ndx
12 4 nnrei N
13 5re 5
14 12 13 ltnei N < 5 5 N
15 14 necomd N < 5 N 5
16 5lt8 5 < 8
17 8re 8
18 13 17 12 lttri 5 < 8 8 < N 5 < N
19 16 18 mpan 8 < N 5 < N
20 13 12 ltnei 5 < N N 5
21 19 20 syl 8 < N N 5
22 15 21 jaoi N < 5 8 < N N 5
23 5 22 ax-mp N 5
24 3 4 ndxarg E ndx = N
25 scandx Scalar ndx = 5
26 24 25 neeq12i E ndx Scalar ndx N 5
27 23 26 mpbir E ndx Scalar ndx
28 11 27 setsnid E W = E W sSet Scalar ndx W 𝑠 S
29 5lt6 5 < 6
30 6re 6
31 12 13 30 lttri N < 5 5 < 6 N < 6
32 29 31 mpan2 N < 5 N < 6
33 12 30 ltnei N < 6 6 N
34 32 33 syl N < 5 6 N
35 34 necomd N < 5 N 6
36 6lt8 6 < 8
37 30 17 12 lttri 6 < 8 8 < N 6 < N
38 36 37 mpan 8 < N 6 < N
39 30 12 ltnei 6 < N N 6
40 38 39 syl 8 < N N 6
41 35 40 jaoi N < 5 8 < N N 6
42 5 41 ax-mp N 6
43 vscandx ndx = 6
44 24 43 neeq12i E ndx ndx N 6
45 42 44 mpbir E ndx ndx
46 11 45 setsnid E W sSet Scalar ndx W 𝑠 S = E W sSet Scalar ndx W 𝑠 S sSet ndx W
47 12 13 17 lttri N < 5 5 < 8 N < 8
48 16 47 mpan2 N < 5 N < 8
49 12 17 ltnei N < 8 8 N
50 48 49 syl N < 5 8 N
51 50 necomd N < 5 N 8
52 17 12 ltnei 8 < N N 8
53 51 52 jaoi N < 5 8 < N N 8
54 5 53 ax-mp N 8
55 ipndx 𝑖 ndx = 8
56 24 55 neeq12i E ndx 𝑖 ndx N 8
57 54 56 mpbir E ndx 𝑖 ndx
58 11 57 setsnid E W sSet Scalar ndx W 𝑠 S sSet ndx W = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
59 28 46 58 3eqtri E W = E W sSet Scalar ndx W 𝑠 S sSet ndx W sSet 𝑖 ndx W
60 10 59 syl6reqr W V φ E W = E A
61 3 str0 = E
62 fvprc ¬ W V E W =
63 62 adantr ¬ W V φ E W =
64 fv2prc ¬ W V subringAlg W S =
65 1 64 sylan9eqr ¬ W V φ A =
66 65 fveq2d ¬ W V φ E A = E
67 61 63 66 3eqtr4a ¬ W V φ E W = E A
68 60 67 pm2.61ian φ E W = E A