Metamath Proof Explorer


Theorem sralmod

Description: The subring algebra is a left module. (Contributed by Stefan O'Rear, 27-Nov-2014)

Ref Expression
Hypothesis sralmod.a A = subringAlg W S
Assertion sralmod S SubRing W A LMod

Proof

Step Hyp Ref Expression
1 sralmod.a A = subringAlg W S
2 1 a1i S SubRing W A = subringAlg W S
3 eqid Base W = Base W
4 3 subrgss S SubRing W S Base W
5 2 4 srabase S SubRing W Base W = Base A
6 2 4 sraaddg S SubRing W + W = + A
7 2 4 srasca S SubRing W W 𝑠 S = Scalar A
8 2 4 sravsca S SubRing W W = A
9 eqid W 𝑠 S = W 𝑠 S
10 9 3 ressbas S SubRing W S Base W = Base W 𝑠 S
11 eqid + W = + W
12 9 11 ressplusg S SubRing W + W = + W 𝑠 S
13 eqid W = W
14 9 13 ressmulr S SubRing W W = W 𝑠 S
15 eqid 1 W = 1 W
16 9 15 subrg1 S SubRing W 1 W = 1 W 𝑠 S
17 9 subrgring S SubRing W W 𝑠 S Ring
18 subrgrcl S SubRing W W Ring
19 ringgrp W Ring W Grp
20 18 19 syl S SubRing W W Grp
21 eqidd S SubRing W Base W = Base W
22 6 oveqdr S SubRing W x Base W y Base W x + W y = x + A y
23 21 5 22 grppropd S SubRing W W Grp A Grp
24 20 23 mpbid S SubRing W A Grp
25 18 3ad2ant1 S SubRing W x S Base W y Base W W Ring
26 elinel2 x S Base W x Base W
27 26 3ad2ant2 S SubRing W x S Base W y Base W x Base W
28 simp3 S SubRing W x S Base W y Base W y Base W
29 3 13 ringcl W Ring x Base W y Base W x W y Base W
30 25 27 28 29 syl3anc S SubRing W x S Base W y Base W x W y Base W
31 18 adantr S SubRing W x S Base W y Base W z Base W W Ring
32 simpr1 S SubRing W x S Base W y Base W z Base W x S Base W
33 32 elin2d S SubRing W x S Base W y Base W z Base W x Base W
34 simpr2 S SubRing W x S Base W y Base W z Base W y Base W
35 simpr3 S SubRing W x S Base W y Base W z Base W z Base W
36 3 11 13 ringdi W Ring x Base W y Base W z Base W x W y + W z = x W y + W x W z
37 31 33 34 35 36 syl13anc S SubRing W x S Base W y Base W z Base W x W y + W z = x W y + W x W z
38 18 adantr S SubRing W x S Base W y S Base W z Base W W Ring
39 simpr1 S SubRing W x S Base W y S Base W z Base W x S Base W
40 39 elin2d S SubRing W x S Base W y S Base W z Base W x Base W
41 simpr2 S SubRing W x S Base W y S Base W z Base W y S Base W
42 41 elin2d S SubRing W x S Base W y S Base W z Base W y Base W
43 simpr3 S SubRing W x S Base W y S Base W z Base W z Base W
44 3 11 13 ringdir W Ring x Base W y Base W z Base W x + W y W z = x W z + W y W z
45 38 40 42 43 44 syl13anc S SubRing W x S Base W y S Base W z Base W x + W y W z = x W z + W y W z
46 3 13 ringass W Ring x Base W y Base W z Base W x W y W z = x W y W z
47 38 40 42 43 46 syl13anc S SubRing W x S Base W y S Base W z Base W x W y W z = x W y W z
48 3 13 15 ringlidm W Ring x Base W 1 W W x = x
49 18 48 sylan S SubRing W x Base W 1 W W x = x
50 5 6 7 8 10 12 14 16 17 24 30 37 45 47 49 islmodd S SubRing W A LMod