Metamath Proof Explorer


Theorem sralmod0

Description: The subring module inherits a zero from its ring. (Contributed by Stefan O'Rear, 27-Dec-2014)

Ref Expression
Hypotheses sralmod0.a φ A = subringAlg W S
sralmod0.z φ 0 ˙ = 0 W
sralmod0.s φ S Base W
Assertion sralmod0 φ 0 ˙ = 0 A

Proof

Step Hyp Ref Expression
1 sralmod0.a φ A = subringAlg W S
2 sralmod0.z φ 0 ˙ = 0 W
3 sralmod0.s φ S Base W
4 eqidd φ Base W = Base W
5 1 3 srabase φ Base W = Base A
6 1 3 sraaddg φ + W = + A
7 6 oveqdr φ a Base W b Base W a + W b = a + A b
8 4 5 7 grpidpropd φ 0 W = 0 A
9 2 8 eqtrd φ 0 ˙ = 0 A