| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
|
| 2 |
1
|
adantr |
|
| 3 |
|
fveq2 |
|
| 4 |
3
|
pweqd |
|
| 5 |
|
id |
|
| 6 |
|
oveq1 |
|
| 7 |
6
|
opeq2d |
|
| 8 |
5 7
|
oveq12d |
|
| 9 |
|
fveq2 |
|
| 10 |
9
|
opeq2d |
|
| 11 |
8 10
|
oveq12d |
|
| 12 |
9
|
opeq2d |
|
| 13 |
11 12
|
oveq12d |
|
| 14 |
4 13
|
mpteq12dv |
|
| 15 |
|
df-sra |
|
| 16 |
|
fvex |
|
| 17 |
16
|
pwex |
|
| 18 |
17
|
mptex |
|
| 19 |
14 15 18
|
fvmpt |
|
| 20 |
2 19
|
syl |
|
| 21 |
|
simpr |
|
| 22 |
21
|
oveq2d |
|
| 23 |
22
|
opeq2d |
|
| 24 |
23
|
oveq2d |
|
| 25 |
24
|
oveq1d |
|
| 26 |
25
|
oveq1d |
|
| 27 |
|
simpr |
|
| 28 |
16
|
elpw2 |
|
| 29 |
27 28
|
sylibr |
|
| 30 |
|
ovexd |
|
| 31 |
20 26 29 30
|
fvmptd |
|