Database BASIC ALGEBRAIC STRUCTURES Rings Semirings srg1expzeq1  
				
		 
		
			
		 
		Description:   The exponentiation (by a nonnegative integer) of the multiplicative
       identity of a semiring, analogous to mulgnn0z  .  (Contributed by AV , 25-Nov-2019) 
		
			
				
					Ref 
					Expression 
				 
					
						Hypotheses 
						srg1expzeq1.g   ⊢   G  =  mulGrp  R      
					 
					
						srg1expzeq1.t   ⊢   ·  ˙ =  ⋅  G      
					 
					
						srg1expzeq1.1   ⊢   1  ˙ =  1  R      
					 
				
					Assertion 
					srg1expzeq1    ⊢    R  ∈  SRing    ∧   N  ∈    ℕ   0       →   N  ·  ˙ 1  ˙ =  1  ˙        
				 
			
		 
		
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1 
								
							 
							srg1expzeq1.g  ⊢   G  =  mulGrp  R      
						
							2 
								
							 
							srg1expzeq1.t  ⊢   ·  ˙ =  ⋅  G      
						
							3 
								
							 
							srg1expzeq1.1  ⊢   1  ˙ =  1  R      
						
							4 
								1 
							 
							srgmgp   ⊢   R  ∈  SRing    →   G  ∈  Mnd         
						
							5 
								
							 
							eqid  ⊢   Base  G =  Base  G      
						
							6 
								1  3 
							 
							ringidval  ⊢   1  ˙ =  0  G      
						
							7 
								5  2  6 
							 
							mulgnn0z   ⊢    G  ∈  Mnd    ∧   N  ∈    ℕ   0       →   N  ·  ˙ 1  ˙ =  1  ˙        
						
							8 
								4  7 
							 
							sylan   ⊢    R  ∈  SRing    ∧   N  ∈    ℕ   0       →   N  ·  ˙ 1  ˙ =  1  ˙