Metamath Proof Explorer


Theorem srg1expzeq1

Description: The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z . (Contributed by AV, 25-Nov-2019)

Ref Expression
Hypotheses srg1expzeq1.g G = mulGrp R
srg1expzeq1.t · ˙ = G
srg1expzeq1.1 1 ˙ = 1 R
Assertion srg1expzeq1 R SRing N 0 N · ˙ 1 ˙ = 1 ˙

Proof

Step Hyp Ref Expression
1 srg1expzeq1.g G = mulGrp R
2 srg1expzeq1.t · ˙ = G
3 srg1expzeq1.1 1 ˙ = 1 R
4 1 srgmgp R SRing G Mnd
5 eqid Base G = Base G
6 1 3 ringidval 1 ˙ = 0 G
7 5 2 6 mulgnn0z G Mnd N 0 N · ˙ 1 ˙ = 1 ˙
8 4 7 sylan R SRing N 0 N · ˙ 1 ˙ = 1 ˙