Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring unit
Semirings
srg1expzeq1
Metamath Proof Explorer
Description: The exponentiation (by a nonnegative integer) of the multiplicative
identity of a semiring, analogous to mulgnn0z . (Contributed by AV , 25-Nov-2019)
Ref
Expression
Hypotheses
srg1expzeq1.g
⊢ G = mulGrp R
srg1expzeq1.t
⊢ · ˙ = ⋅ G
srg1expzeq1.1
⊢ 1 ˙ = 1 R
Assertion
srg1expzeq1
⊢ R ∈ SRing ∧ N ∈ ℕ 0 → N · ˙ 1 ˙ = 1 ˙
Proof
Step
Hyp
Ref
Expression
1
srg1expzeq1.g
⊢ G = mulGrp R
2
srg1expzeq1.t
⊢ · ˙ = ⋅ G
3
srg1expzeq1.1
⊢ 1 ˙ = 1 R
4
1
srgmgp
⊢ R ∈ SRing → G ∈ Mnd
5
eqid
⊢ Base G = Base G
6
1 3
ringidval
⊢ 1 ˙ = 0 G
7
5 2 6
mulgnn0z
⊢ G ∈ Mnd ∧ N ∈ ℕ 0 → N · ˙ 1 ˙ = 1 ˙
8
4 7
sylan
⊢ R ∈ SRing ∧ N ∈ ℕ 0 → N · ˙ 1 ˙ = 1 ˙