Metamath Proof Explorer


Theorem srg1zr

Description: The only semiring with a base set consisting of one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 13-Feb-2010) (Revised by AV, 25-Jan-2020)

Ref Expression
Hypotheses srg1zr.b B = Base R
srg1zr.p + ˙ = + R
srg1zr.t ˙ = R
Assertion srg1zr R SRing + ˙ Fn B × B ˙ Fn B × B Z B B = Z + ˙ = Z Z Z ˙ = Z Z Z

Proof

Step Hyp Ref Expression
1 srg1zr.b B = Base R
2 srg1zr.p + ˙ = + R
3 srg1zr.t ˙ = R
4 pm4.24 B = Z B = Z B = Z
5 srgmnd R SRing R Mnd
6 5 3ad2ant1 R SRing + ˙ Fn B × B ˙ Fn B × B R Mnd
7 6 adantr R SRing + ˙ Fn B × B ˙ Fn B × B Z B R Mnd
8 mndmgm R Mnd R Mgm
9 7 8 syl R SRing + ˙ Fn B × B ˙ Fn B × B Z B R Mgm
10 simpr R SRing + ˙ Fn B × B ˙ Fn B × B Z B Z B
11 simpl2 R SRing + ˙ Fn B × B ˙ Fn B × B Z B + ˙ Fn B × B
12 1 2 mgmb1mgm1 R Mgm Z B + ˙ Fn B × B B = Z + ˙ = Z Z Z
13 9 10 11 12 syl3anc R SRing + ˙ Fn B × B ˙ Fn B × B Z B B = Z + ˙ = Z Z Z
14 simpl1 R SRing + ˙ Fn B × B ˙ Fn B × B Z B R SRing
15 eqid mulGrp R = mulGrp R
16 15 srgmgp R SRing mulGrp R Mnd
17 mndmgm mulGrp R Mnd mulGrp R Mgm
18 14 16 17 3syl R SRing + ˙ Fn B × B ˙ Fn B × B Z B mulGrp R Mgm
19 15 3 mgpplusg ˙ = + mulGrp R
20 19 fneq1i ˙ Fn B × B + mulGrp R Fn B × B
21 20 biimpi ˙ Fn B × B + mulGrp R Fn B × B
22 21 3ad2ant3 R SRing + ˙ Fn B × B ˙ Fn B × B + mulGrp R Fn B × B
23 22 adantr R SRing + ˙ Fn B × B ˙ Fn B × B Z B + mulGrp R Fn B × B
24 15 1 mgpbas B = Base mulGrp R
25 eqid + mulGrp R = + mulGrp R
26 24 25 mgmb1mgm1 mulGrp R Mgm Z B + mulGrp R Fn B × B B = Z + mulGrp R = Z Z Z
27 18 10 23 26 syl3anc R SRing + ˙ Fn B × B ˙ Fn B × B Z B B = Z + mulGrp R = Z Z Z
28 19 eqcomi + mulGrp R = ˙
29 28 a1i R SRing + ˙ Fn B × B ˙ Fn B × B Z B + mulGrp R = ˙
30 29 eqeq1d R SRing + ˙ Fn B × B ˙ Fn B × B Z B + mulGrp R = Z Z Z ˙ = Z Z Z
31 27 30 bitrd R SRing + ˙ Fn B × B ˙ Fn B × B Z B B = Z ˙ = Z Z Z
32 13 31 anbi12d R SRing + ˙ Fn B × B ˙ Fn B × B Z B B = Z B = Z + ˙ = Z Z Z ˙ = Z Z Z
33 4 32 syl5bb R SRing + ˙ Fn B × B ˙ Fn B × B Z B B = Z + ˙ = Z Z Z ˙ = Z Z Z