Metamath Proof Explorer


Theorem srgacl

Description: Closure of the addition operation of a semiring. (Contributed by Mario Carneiro, 14-Jan-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgacl.b B = Base R
srgacl.p + ˙ = + R
Assertion srgacl R SRing X B Y B X + ˙ Y B

Proof

Step Hyp Ref Expression
1 srgacl.b B = Base R
2 srgacl.p + ˙ = + R
3 srgmnd R SRing R Mnd
4 1 2 mndcl R Mnd X B Y B X + ˙ Y B
5 3 4 syl3an1 R SRing X B Y B X + ˙ Y B