Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring unit
Semirings
srgass
Metamath Proof Explorer
Description: Associative law for the multiplication operation of a semiring.
(Contributed by NM , 27-Aug-2011) (Revised by Mario Carneiro , 6-Jan-2015) (Revised by Thierry Arnoux , 1-Apr-2018)
Ref
Expression
Hypotheses
srgcl.b
⊢ B = Base R
srgcl.t
⊢ · ˙ = ⋅ R
Assertion
srgass
⊢ R ∈ SRing ∧ X ∈ B ∧ Y ∈ B ∧ Z ∈ B → X · ˙ Y · ˙ Z = X · ˙ Y · ˙ Z
Proof
Step
Hyp
Ref
Expression
1
srgcl.b
⊢ B = Base R
2
srgcl.t
⊢ · ˙ = ⋅ R
3
eqid
⊢ mulGrp R = mulGrp R
4
3
srgmgp
⊢ R ∈ SRing → mulGrp R ∈ Mnd
5
3 1
mgpbas
⊢ B = Base mulGrp R
6
3 2
mgpplusg
⊢ · ˙ = + mulGrp R
7
5 6
mndass
⊢ mulGrp R ∈ Mnd ∧ X ∈ B ∧ Y ∈ B ∧ Z ∈ B → X · ˙ Y · ˙ Z = X · ˙ Y · ˙ Z
8
4 7
sylan
⊢ R ∈ SRing ∧ X ∈ B ∧ Y ∈ B ∧ Z ∈ B → X · ˙ Y · ˙ Z = X · ˙ Y · ˙ Z