Step |
Hyp |
Ref |
Expression |
1 |
|
srgbinom.s |
|
2 |
|
srgbinom.m |
|
3 |
|
srgbinom.t |
|
4 |
|
srgbinom.a |
|
5 |
|
srgbinom.g |
|
6 |
|
srgbinom.e |
|
7 |
|
srgbinomlem.r |
|
8 |
|
srgbinomlem.a |
|
9 |
|
srgbinomlem.b |
|
10 |
|
srgbinomlem.c |
|
11 |
|
srgbinomlem.n |
|
12 |
|
srgbinomlem.i |
|
13 |
1 2 3 4 5 6 7 8 9 10 11 12
|
srgbinomlem3 |
|
14 |
1 2 3 4 5 6 7 8 9 10 11 12
|
srgbinomlem4 |
|
15 |
13 14
|
oveq12d |
|
16 |
5
|
srgmgp |
|
17 |
7 16
|
syl |
|
18 |
|
srgmnd |
|
19 |
7 18
|
syl |
|
20 |
1 4
|
mndcl |
|
21 |
19 8 9 20
|
syl3anc |
|
22 |
17 11 21
|
3jca |
|
23 |
22
|
adantr |
|
24 |
5 1
|
mgpbas |
|
25 |
5 2
|
mgpplusg |
|
26 |
24 6 25
|
mulgnn0p1 |
|
27 |
23 26
|
syl |
|
28 |
24 6
|
mulgnn0cl |
|
29 |
17 11 21 28
|
syl3anc |
|
30 |
29 8 9
|
3jca |
|
31 |
7 30
|
jca |
|
32 |
31
|
adantr |
|
33 |
1 4 2
|
srgdi |
|
34 |
32 33
|
syl |
|
35 |
27 34
|
eqtrd |
|
36 |
|
elfzelz |
|
37 |
|
bcpasc |
|
38 |
11 36 37
|
syl2an |
|
39 |
38
|
oveq1d |
|
40 |
19
|
adantr |
|
41 |
|
bccl |
|
42 |
11 36 41
|
syl2an |
|
43 |
36
|
adantl |
|
44 |
|
peano2zm |
|
45 |
43 44
|
syl |
|
46 |
|
bccl |
|
47 |
11 45 46
|
syl2an2r |
|
48 |
7
|
adantr |
|
49 |
17
|
adantr |
|
50 |
|
fznn0sub |
|
51 |
50
|
adantl |
|
52 |
8
|
adantr |
|
53 |
24 6
|
mulgnn0cl |
|
54 |
49 51 52 53
|
syl3anc |
|
55 |
|
elfznn0 |
|
56 |
55
|
adantl |
|
57 |
9
|
adantr |
|
58 |
24 6
|
mulgnn0cl |
|
59 |
49 56 57 58
|
syl3anc |
|
60 |
1 2
|
srgcl |
|
61 |
48 54 59 60
|
syl3anc |
|
62 |
1 3 4
|
mulgnn0dir |
|
63 |
40 42 47 61 62
|
syl13anc |
|
64 |
39 63
|
eqtr3d |
|
65 |
64
|
mpteq2dva |
|
66 |
65
|
oveq2d |
|
67 |
|
srgcmn |
|
68 |
7 67
|
syl |
|
69 |
|
fzfid |
|
70 |
1 3
|
mulgnn0cl |
|
71 |
40 42 61 70
|
syl3anc |
|
72 |
36 44
|
syl |
|
73 |
11 72 46
|
syl2an |
|
74 |
1 3
|
mulgnn0cl |
|
75 |
40 73 61 74
|
syl3anc |
|
76 |
|
eqid |
|
77 |
|
eqid |
|
78 |
1 4 68 69 71 75 76 77
|
gsummptfidmadd |
|
79 |
66 78
|
eqtrd |
|
80 |
79
|
adantr |
|
81 |
15 35 80
|
3eqtr4d |
|