Metamath Proof Explorer


Theorem srgbinomlem2

Description: Lemma 2 for srgbinomlem . (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgbinom.s S = Base R
srgbinom.m × ˙ = R
srgbinom.t · ˙ = R
srgbinom.a + ˙ = + R
srgbinom.g G = mulGrp R
srgbinom.e × ˙ = G
srgbinomlem.r φ R SRing
srgbinomlem.a φ A S
srgbinomlem.b φ B S
srgbinomlem.c φ A × ˙ B = B × ˙ A
srgbinomlem.n φ N 0
Assertion srgbinomlem2 φ C 0 D 0 E 0 C · ˙ D × ˙ A × ˙ E × ˙ B S

Proof

Step Hyp Ref Expression
1 srgbinom.s S = Base R
2 srgbinom.m × ˙ = R
3 srgbinom.t · ˙ = R
4 srgbinom.a + ˙ = + R
5 srgbinom.g G = mulGrp R
6 srgbinom.e × ˙ = G
7 srgbinomlem.r φ R SRing
8 srgbinomlem.a φ A S
9 srgbinomlem.b φ B S
10 srgbinomlem.c φ A × ˙ B = B × ˙ A
11 srgbinomlem.n φ N 0
12 srgmnd R SRing R Mnd
13 7 12 syl φ R Mnd
14 13 adantr φ C 0 D 0 E 0 R Mnd
15 simpr1 φ C 0 D 0 E 0 C 0
16 1 2 3 4 5 6 7 8 9 10 11 srgbinomlem1 φ D 0 E 0 D × ˙ A × ˙ E × ˙ B S
17 16 3adantr1 φ C 0 D 0 E 0 D × ˙ A × ˙ E × ˙ B S
18 1 3 mulgnn0cl R Mnd C 0 D × ˙ A × ˙ E × ˙ B S C · ˙ D × ˙ A × ˙ E × ˙ B S
19 14 15 17 18 syl3anc φ C 0 D 0 E 0 C · ˙ D × ˙ A × ˙ E × ˙ B S