Step |
Hyp |
Ref |
Expression |
1 |
|
srgbinom.s |
|
2 |
|
srgbinom.m |
|
3 |
|
srgbinom.t |
|
4 |
|
srgbinom.a |
|
5 |
|
srgbinom.g |
|
6 |
|
srgbinom.e |
|
7 |
|
srgbinomlem.r |
|
8 |
|
srgbinomlem.a |
|
9 |
|
srgbinomlem.b |
|
10 |
|
srgbinomlem.c |
|
11 |
|
srgbinomlem.n |
|
12 |
|
srgbinomlem.i |
|
13 |
12
|
adantl |
|
14 |
13
|
oveq1d |
|
15 |
|
srgcmn |
|
16 |
7 15
|
syl |
|
17 |
|
simpl |
|
18 |
|
elfzelz |
|
19 |
|
bccl |
|
20 |
11 18 19
|
syl2an |
|
21 |
|
fznn0sub |
|
22 |
21
|
adantl |
|
23 |
|
elfznn0 |
|
24 |
23
|
adantl |
|
25 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem2 |
|
26 |
17 20 22 24 25
|
syl13anc |
|
27 |
1 4 16 11 26
|
gsummptfzsplit |
|
28 |
|
srgmnd |
|
29 |
7 28
|
syl |
|
30 |
|
ovexd |
|
31 |
|
id |
|
32 |
11
|
nn0zd |
|
33 |
32
|
peano2zd |
|
34 |
|
bccl |
|
35 |
11 33 34
|
syl2anc |
|
36 |
11
|
nn0cnd |
|
37 |
|
peano2cn |
|
38 |
36 37
|
syl |
|
39 |
38
|
subidd |
|
40 |
|
0nn0 |
|
41 |
39 40
|
eqeltrdi |
|
42 |
|
peano2nn0 |
|
43 |
11 42
|
syl |
|
44 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem2 |
|
45 |
31 35 41 43 44
|
syl13anc |
|
46 |
|
oveq2 |
|
47 |
|
oveq2 |
|
48 |
47
|
oveq1d |
|
49 |
|
oveq1 |
|
50 |
48 49
|
oveq12d |
|
51 |
46 50
|
oveq12d |
|
52 |
1 51
|
gsumsn |
|
53 |
29 30 45 52
|
syl3anc |
|
54 |
11
|
nn0red |
|
55 |
54
|
ltp1d |
|
56 |
55
|
olcd |
|
57 |
|
bcval4 |
|
58 |
11 33 56 57
|
syl3anc |
|
59 |
58
|
oveq1d |
|
60 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem1 |
|
61 |
31 41 43 60
|
syl12anc |
|
62 |
|
eqid |
|
63 |
1 62 3
|
mulg0 |
|
64 |
61 63
|
syl |
|
65 |
53 59 64
|
3eqtrd |
|
66 |
65
|
oveq2d |
|
67 |
|
fzfid |
|
68 |
|
simpl |
|
69 |
|
bccl2 |
|
70 |
69
|
nnnn0d |
|
71 |
70
|
adantl |
|
72 |
|
fzelp1 |
|
73 |
72 22
|
sylan2 |
|
74 |
|
elfznn0 |
|
75 |
74
|
adantl |
|
76 |
68 71 73 75 25
|
syl13anc |
|
77 |
76
|
ralrimiva |
|
78 |
1 16 67 77
|
gsummptcl |
|
79 |
1 4 62
|
mndrid |
|
80 |
29 78 79
|
syl2anc |
|
81 |
27 66 80
|
3eqtrd |
|
82 |
7
|
adantr |
|
83 |
8
|
adantr |
|
84 |
9
|
adantr |
|
85 |
10
|
adantr |
|
86 |
|
fznn0sub |
|
87 |
86
|
adantl |
|
88 |
1 2 5 6 82 83 84 75 85 87 3 71
|
srgpcomppsc |
|
89 |
36
|
adantr |
|
90 |
|
1cnd |
|
91 |
|
elfzelz |
|
92 |
91
|
zcnd |
|
93 |
92
|
adantl |
|
94 |
89 90 93
|
addsubd |
|
95 |
94
|
oveq1d |
|
96 |
95
|
oveq1d |
|
97 |
96
|
oveq2d |
|
98 |
88 97
|
eqtr4d |
|
99 |
98
|
mpteq2dva |
|
100 |
99
|
oveq2d |
|
101 |
|
ovexd |
|
102 |
1 2 3 4 5 6 7 8 9 10 11
|
srgbinomlem2 |
|
103 |
68 71 87 75 102
|
syl13anc |
|
104 |
|
eqid |
|
105 |
|
ovexd |
|
106 |
|
fvexd |
|
107 |
104 67 105 106
|
fsuppmptdm |
|
108 |
1 62 4 2 7 101 8 103 107
|
srgsummulcr |
|
109 |
81 100 108
|
3eqtr2rd |
|
110 |
109
|
adantr |
|
111 |
14 110
|
eqtrd |
|