Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring unit
Semirings
srgcl
Metamath Proof Explorer
Description: Closure of the multiplication operation of a semiring. (Contributed by NM , 26-Aug-2011) (Revised by Mario Carneiro , 6-Jan-2015) (Revised by Thierry Arnoux , 1-Apr-2018)
Ref
Expression
Hypotheses
srgcl.b
⊢ B = Base R
srgcl.t
⊢ · ˙ = ⋅ R
Assertion
srgcl
⊢ R ∈ SRing ∧ X ∈ B ∧ Y ∈ B → X · ˙ Y ∈ B
Proof
Step
Hyp
Ref
Expression
1
srgcl.b
⊢ B = Base R
2
srgcl.t
⊢ · ˙ = ⋅ R
3
eqid
⊢ mulGrp R = mulGrp R
4
3
srgmgp
⊢ R ∈ SRing → mulGrp R ∈ Mnd
5
3 1
mgpbas
⊢ B = Base mulGrp R
6
3 2
mgpplusg
⊢ · ˙ = + mulGrp R
7
5 6
mndcl
⊢ mulGrp R ∈ Mnd ∧ X ∈ B ∧ Y ∈ B → X · ˙ Y ∈ B
8
4 7
syl3an1
⊢ R ∈ SRing ∧ X ∈ B ∧ Y ∈ B → X · ˙ Y ∈ B