Metamath Proof Explorer


Theorem srgcmn

Description: A semiring is a commutative monoid. (Contributed by Thierry Arnoux, 21-Mar-2018)

Ref Expression
Assertion srgcmn R SRing R CMnd

Proof

Step Hyp Ref Expression
1 eqid Base R = Base R
2 eqid mulGrp R = mulGrp R
3 eqid + R = + R
4 eqid R = R
5 eqid 0 R = 0 R
6 1 2 3 4 5 issrg R SRing R CMnd mulGrp R Mnd x Base R y Base R z Base R x R y + R z = x R y + R x R z x + R y R z = x R z + R y R z 0 R R x = 0 R x R 0 R = 0 R
7 6 simp1bi R SRing R CMnd