Metamath Proof Explorer


Theorem srgcom

Description: Commutativity of the additive group of a semiring. (Contributed by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgacl.b B = Base R
srgacl.p + ˙ = + R
Assertion srgcom R SRing X B Y B X + ˙ Y = Y + ˙ X

Proof

Step Hyp Ref Expression
1 srgacl.b B = Base R
2 srgacl.p + ˙ = + R
3 srgcmn R SRing R CMnd
4 1 2 cmncom R CMnd X B Y B X + ˙ Y = Y + ˙ X
5 3 4 syl3an1 R SRing X B Y B X + ˙ Y = Y + ˙ X