Metamath Proof Explorer


Theorem srgcom4lem

Description: Lemma for srgcom4 . This (formerly) part of the proof for ringcom is applicable for semirings (without using the commutativity of the addition given per definition of a semiring). (Contributed by Gérard Lang, 4-Dec-2014) (Revised by AV, 1-Feb-2025) (Proof modification is discouraged.)

Ref Expression
Hypotheses srgcom4.b B = Base R
srgcom4.p + ˙ = + R
Assertion srgcom4lem R SRing X B Y B X + ˙ X + ˙ Y + ˙ Y = X + ˙ Y + ˙ X + ˙ Y

Proof

Step Hyp Ref Expression
1 srgcom4.b B = Base R
2 srgcom4.p + ˙ = + R
3 eqid R = R
4 1 2 3 srgdir R SRing x B y B z B x + ˙ y R z = x R z + ˙ y R z
5 4 ralrimivvva R SRing x B y B z B x + ˙ y R z = x R z + ˙ y R z
6 5 3ad2ant1 R SRing X B Y B x B y B z B x + ˙ y R z = x R z + ˙ y R z
7 eqid 1 R = 1 R
8 1 7 srgidcl R SRing 1 R B
9 8 3ad2ant1 R SRing X B Y B 1 R B
10 1 3 7 srglidm R SRing x B 1 R R x = x
11 10 ralrimiva R SRing x B 1 R R x = x
12 11 3ad2ant1 R SRing X B Y B x B 1 R R x = x
13 simp2 R SRing X B Y B X B
14 1 2 srgacl R SRing x B y B x + ˙ y B
15 14 3expb R SRing x B y B x + ˙ y B
16 15 ralrimivva R SRing x B y B x + ˙ y B
17 16 3ad2ant1 R SRing X B Y B x B y B x + ˙ y B
18 1 2 3 srgdi R SRing x B y B z B x R y + ˙ z = x R y + ˙ x R z
19 18 ralrimivvva R SRing x B y B z B x R y + ˙ z = x R y + ˙ x R z
20 19 3ad2ant1 R SRing X B Y B x B y B z B x R y + ˙ z = x R y + ˙ x R z
21 simp3 R SRing X B Y B Y B
22 6 9 12 13 17 20 21 rglcom4d R SRing X B Y B X + ˙ X + ˙ Y + ˙ Y = X + ˙ Y + ˙ X + ˙ Y