Metamath Proof Explorer


Theorem srgdi

Description: Distributive law for the multiplication operation of a semiring. (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses srgdi.b B = Base R
srgdi.p + ˙ = + R
srgdi.t · ˙ = R
Assertion srgdi R SRing X B Y B Z B X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z

Proof

Step Hyp Ref Expression
1 srgdi.b B = Base R
2 srgdi.p + ˙ = + R
3 srgdi.t · ˙ = R
4 1 2 3 srgi R SRing X B Y B Z B X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z X + ˙ Y · ˙ Z = X · ˙ Z + ˙ Y · ˙ Z
5 4 simpld R SRing X B Y B Z B X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z