Database
BASIC ALGEBRAIC STRUCTURES
Rings
Ring unit
Semirings
srgdi
Metamath Proof Explorer
Description: Distributive law for the multiplication operation of a semiring.
(Contributed by Steve Rodriguez , 9-Sep-2007) (Revised by Thierry
Arnoux , 1-Apr-2018)
Ref
Expression
Hypotheses
srgdi.b
⊢ B = Base R
srgdi.p
⊢ + ˙ = + R
srgdi.t
⊢ · ˙ = ⋅ R
Assertion
srgdi
⊢ R ∈ SRing ∧ X ∈ B ∧ Y ∈ B ∧ Z ∈ B → X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z
Proof
Step
Hyp
Ref
Expression
1
srgdi.b
⊢ B = Base R
2
srgdi.p
⊢ + ˙ = + R
3
srgdi.t
⊢ · ˙ = ⋅ R
4
1 2 3
srgi
⊢ R ∈ SRing ∧ X ∈ B ∧ Y ∈ B ∧ Z ∈ B → X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z ∧ X + ˙ Y · ˙ Z = X · ˙ Z + ˙ Y · ˙ Z
5
4
simpld
⊢ R ∈ SRing ∧ X ∈ B ∧ Y ∈ B ∧ Z ∈ B → X · ˙ Y + ˙ Z = X · ˙ Y + ˙ X · ˙ Z