Metamath Proof Explorer


Theorem srgen1zr

Description: The only semiring with one element is the zero ring (at least if its operations are internal binary operations). (Contributed by FL, 14-Feb-2010) (Revised by AV, 25-Jan-2020)

Ref Expression
Hypotheses srg1zr.b B = Base R
srg1zr.p + ˙ = + R
srg1zr.t ˙ = R
srgen1zr.p Z = 0 R
Assertion srgen1zr R SRing + ˙ Fn B × B ˙ Fn B × B B 1 𝑜 + ˙ = Z Z Z ˙ = Z Z Z

Proof

Step Hyp Ref Expression
1 srg1zr.b B = Base R
2 srg1zr.p + ˙ = + R
3 srg1zr.t ˙ = R
4 srgen1zr.p Z = 0 R
5 1 4 srg0cl R SRing Z B
6 5 3ad2ant1 R SRing + ˙ Fn B × B ˙ Fn B × B Z B
7 en1eqsnbi Z B B 1 𝑜 B = Z
8 7 adantl R SRing + ˙ Fn B × B ˙ Fn B × B Z B B 1 𝑜 B = Z
9 1 2 3 srg1zr R SRing + ˙ Fn B × B ˙ Fn B × B Z B B = Z + ˙ = Z Z Z ˙ = Z Z Z
10 8 9 bitrd R SRing + ˙ Fn B × B ˙ Fn B × B Z B B 1 𝑜 + ˙ = Z Z Z ˙ = Z Z Z
11 6 10 mpdan R SRing + ˙ Fn B × B ˙ Fn B × B B 1 𝑜 + ˙ = Z Z Z ˙ = Z Z Z